LTAR: Tensor Forecasting Functions

A set of tools for forecasting the next step in a multidimensional setting using tensors. In the examples, a forecast is made of sea surface temperatures of a geographic grid (i.e. lat/long). Each observation is a matrix, the entries in the matrix and the sea surface temperature at a particular lattitude/longitude. Cates, J., Hoover, R. C., Caudle, K., Kopp, R., & Ozdemir, C. (2021) "Transform-Based Tensor Auto Regression for Multilinear Time Series Forecasting" in 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 461-466), IEEE <doi:10.1109/ICMLA52953.2021.00078>.

Version: 0.1.0
Depends: R (≥ 4.2.0)
Imports: vars, stats, rTensor, rTensor2, gsignal
Published: 2023-08-21
DOI: 10.32614/CRAN.package.LTAR
Author: Kyle Caudle [aut, cre], Randy Hoover [ctb], Jackson Cates [ctb]
Maintainer: Kyle Caudle <kyle.caudle at>
License: GPL-3
NeedsCompilation: no
CRAN checks: LTAR results


Reference manual: LTAR.pdf


Package source: LTAR_0.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): LTAR_0.1.0.tgz, r-oldrel (arm64): LTAR_0.1.0.tgz, r-release (x86_64): LTAR_0.1.0.tgz, r-oldrel (x86_64): LTAR_0.1.0.tgz


Please use the canonical form to link to this page.