SBdecomp: Estimation of the Proportion of SB Explained by Confounders

Uses parametric and nonparametric methods to quantify the proportion of the estimated selection bias (SB) explained by each observed confounder when estimating propensity score weighted treatment effects. Parast, L and Griffin, BA (2020). "Quantifying the Bias due to Observed Individual Confounders in Causal Treatment Effect Estimates". Statistics in Medicine, 39(18): 2447- 2476 <doi:10.1002/sim.8549>.

Version: 1.2
Depends: R (≥ 3.5.0)
Imports: stats, twang, graphics, survey
Published: 2021-11-15
DOI: 10.32614/CRAN.package.SBdecomp
Author: Layla Parast
Maintainer: Layla Parast <parast at>
License: GPL-2 | GPL-3 [expanded from: GPL]
NeedsCompilation: no
CRAN checks: SBdecomp results


Reference manual: SBdecomp.pdf


Package source: SBdecomp_1.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): SBdecomp_1.2.tgz, r-oldrel (arm64): SBdecomp_1.2.tgz, r-release (x86_64): SBdecomp_1.2.tgz, r-oldrel (x86_64): SBdecomp_1.2.tgz
Old sources: SBdecomp archive


Please use the canonical form to link to this page.