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adaptive_spline General Interface for Adaptive Spline Surface Models

Description

adaptive_spline() is a way to generate a specification of an Adaptive Spline Surface model
before fitting and allows the model to be created using different packages. Currently the only
package is BASS.
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Usage

adaptive_spline(
mode = "regression",
splines_degree = NULL,
max_degree = NULL,
max_categorical_degree = NULL,
min_basis_points = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

splines_degree degree of splines. Stability should be examined for anything other than 1.

max_degree integer for maximum degree of interaction in spline basis functions. Defaults to
the number of predictors, which could result in overfitting.

max_categorical_degree

(categorical input only) integer for maximum degree of interaction of categorical
inputs.

min_basis_points

minimum number of non-zero points in a basis function. If the response is func-
tional, this refers only to the portion of the basis function coming from the non-
functional predictors. Defaults to 20 or 0.1 times the number of observations,
whichever is smaller.

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For adaptive_spline(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "stan" (default) - Connects to BASS::bass()

Main Arguments

The main arguments (tuning parameters) for the model are:

• splines_degree

• max_degree

• max_categorical_degree

• min_basis_points

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.
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Value

A model spec

Engine Details

Other options can be set using set_engine().

stan (default engine)

The engine uses BASS::bass().

Parameter Notes:

• xreg - This is supplied via the parsnip / bayesmodels fit() interface (so don’t provide this
manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Univariate (No xregs, Exogenous Regressors):

This algorithm only accepts multivariate: you need to pass xregs (read next section).

Multivariate (xregs, Exogenous Regressors)

The xreg parameter is populated using the fit() function:

• Only factor, ordered factor, and numeric data will be used as xregs.

• Date and Date-time variables are not used as xregs

• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)

2. date (time stamp),

3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the sarima_reg() using fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()
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Examples

## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)
library(lubridate)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)

# ---- Adaptive Spline ----

# Model Spec
model_spec <- adaptive_spline() %>%

set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date + month(date), data = training(splits))
model_fit

## End(Not run)

adaptive_splines_params

Tuning Parameters for Adaptive Splines Surface Models

Description

Tuning Parameters for Adaptive Splines Surface Models

Usage

splines_degree(range = c(0L, 5L), trans = NULL)

max_degree(range = c(0L, 5L), trans = NULL)

max_categorical_degree(range = c(0L, 5L), trans = NULL)

min_basis_points(range = c(0L, 1000L), trans = NULL)
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Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

The main parameters for Adaptive Splines Surface models are:

• splines_degree: degree of splines. Stability should be examined for anything other than 1.

• max_degree: integer for maximum degree of interaction in spline basis functions.

• max_categorical_degree: (categorical input only) integer for maximum degree of interac-
tion of categorical inputs.

• min_basis_points: minimum number of non-zero points in a basis function

Value

A parameter

A parameter

A parameter

A parameter

Examples

splines_degree()

max_degree()

min_basis_points()

adaptive_spline_stan_fit_impl

Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast
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Usage

adaptive_spline_stan_fit_impl(
x,
y,
degree = 1,
maxInt = 3,
maxInt.cat = 3,
npart = NULL,
...

)

Arguments

x A dataframe of xreg (exogenous regressors)
y A numeric vector of values to fit
degree degree of splines
maxInt integer for maximum degree of interaction in spline basis functions
maxInt.cat (categorical input only) integer for maximum degree of interaction of categorical

inputs
npart minimum number of non-zero points in a basis function
... Extra arguments

Value

A modeltime model

adaptive_spline_stan_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

adaptive_spline_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit
new_data A rectangular data object, such as a data frame.
... Additional arguments passed to forecast::Arima()

Value

A prediction
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additive_state_space General Interface for Additive Linear State Space Regression Models

Description

additive_state_space() is a way to generate a specification of a Additive Linear State Space Re-
gression Model before fitting and allows the model to be created using different packages. Currently
the only package is bayesforecast.

Usage

additive_state_space(
mode = "regression",
trend_model = NULL,
damped_model = NULL,
seasonal_model = NULL,
seasonal_period = NULL,
garch_t_student = NULL,
markov_chains = NULL,
chain_iter = NULL,
warmup_iter = NULL,
adapt_delta = NULL,
tree_depth = NULL,
pred_seed = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

trend_model a boolean value to specify a trend local level model. By default is FALSE.

damped_model a boolean value to specify a damped trend local level model. By default is
FALSE.

seasonal_model a boolean value to specify a seasonal local level model. By default is FALSE.
seasonal_period

an integer specifying the periodicity of the time series by default the value fre-
quency(ts) is used

garch_t_student

a boolean value to specify for a generalized t-student SSM model.

markov_chains An integer of the number of Markov Chains chains to be run, by default 4 chains
are run.

chain_iter An integer of total iterations per chain including the warm-up, by default the
number of iterations are 2000.
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warmup_iter A positive integer specifying number of warm-up (aka burn-in) iterations. This
also specifies the number of iterations used for step-size adaptation, so warm-up
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

adapt_delta An optional real value between 0 and 1, the thin of the jumps in a HMC method.
By default is 0.9

tree_depth An integer of the maximum depth of the trees evaluated during each iteration.
By default is 10.

pred_seed An integer with the seed for using when predicting with the model.

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For additive_state_space(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "stan" (default) - Connects to bayesforecast::stan_ssm()

Main Arguments
The main arguments (tuning parameters) for the model are:

• trend_model: a boolean value to specify a trend local level model. By default is FALSE.

• damped_model: a boolean value to specify a damped trend local level model. By default is
FALSE.

• seasonal_model: a boolean value to specify a seasonal local level model. By default is
FALSE.

• markov_chains: An integer of the number of Markov Chains chains to be run.

• adapt_delta: The thin of the jumps in a HMC method.

• tree_depth: The maximum depth of the trees evaluated during each iteration.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

Value

A model spec

Engine Details

The standardized parameter names in bayesmodels can be mapped to their original names in each
engine:

bayesmodels bayesforecast::stan_ssm
trend_model trend
damped_model damped
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seasonal_model seasonal
seasonal_period period
markov_chains chains(4)
adapt_delta adapt.delta(0.9)
tree_depth tree.depth(10)

Other options can be set using set_engine().

stan (default engine)

The engine uses bayesforecast::stan_ssm().

Parameter Notes:

• xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this
manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For
monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period
= "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto": A seasonal period is selected based on the periodicity of the
data (e.g. 12 if monthly)

2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate (No xregs, Exogenous Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)

The xreg parameter is populated using the fit() or fit_xy() function:

• Only factor, ordered factor, and numeric data will be used as xregs.

• Date and Date-time variables are not used as xregs

• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:
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1. y (target)

2. date (time stamp),

3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the arima_reg() using fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)

# ---- AUTO ARIMA ----

# Model Spec
model_spec <- additive_state_space() %>%

set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

predict(model_fit, testing(splits))

## End(Not run)



12 bayesian_structural_reg

bayesian_structural_reg

General Interface for Bayesian Structural Time Series Models

Description

bayesian_structural_reg() is a way to generate a specification of a Bayesian Structural Time
Series Model before fitting and allows the model to be created using different packages. Currently
the only package is bsts.

Usage

bayesian_structural_reg(mode = "regression", distribution = NULL)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

distribution The model family for the observation equation. Non-Gaussian model families
use data augmentation to recover a conditionally Gaussian model.

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For bayesian_structural_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "stan" (default) - Connects to bsts::bsts()

Main Arguments

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

stan (default engine)

The engine uses bsts::bsts().

Parameter Notes:

• xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this
manually). See Fit Details (below).

Value

A model spec
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Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
The xreg parameter is populated using the fit() or fit_xy() function:

• Only factor, ordered factor, and numeric data will be used as xregs.

• Date and Date-time variables are not used as xregs

• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)

2. date (time stamp),

3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the arima_reg() using fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.8)
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ss <- AddLocalLinearTrend(list(), training(splits)$value)

# Model Spec
model_spec <- bayesian_structural_reg() %>%

set_engine("stan", state.specification = ss)

# Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

predict(model_fit, testing(splits))

## End(Not run)

bayesian_structural_stan_fit_impl

Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

bayesian_structural_stan_fit_impl(formula, data, family = "gaussian", ...)

Arguments

formula A dataframe of xreg (exogenous regressors)

data A numeric vector of values to fit

family The model family for the observation equation. Non-Gaussian model families
use data augmentation to recover a conditionally Gaussian model.

... Additional arguments passed to forecast::Arima

Value

A modeltime model
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bayesian_structural_stan_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

bayesian_structural_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to forecast::Arima()

Value

A prediction

exponential_smoothing General Interface for Exponential Smoothing Models

Description

exponential_smoothing() is a way to generate a specification of an ETS model before fitting and
allows the model to be created using different packages. Currently the only package is Rlgt.

Usage

exponential_smoothing(
mode = "regression",
seasonality = NULL,
second_seasonality = NULL,
seasonality_type = NULL,
method = NULL,
error_method = NULL

)
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Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

seasonality This specification of seasonality will be overridden by frequency of y, if y is of
ts or msts class. 1 by default, i.e. no seasonality.

second_seasonality

Second seasonality.
seasonality_type

Either "multiplicative" (default) or "generalized". The latter seasonality gener-
alizes additive and multiplicative seasonality types.

method "HW", "seasAvg", "HW_sAvg". Here, "HW" follows Holt-Winters approach.
"seasAvg" calculates level as a smoothed average of the last seasonality num-
ber of points (or seasonality2 of them for the dual seasonality model), and
HW_sAvg is an weighted average of HW and seasAvg methods.

error_method Function providing size of the error. Either "std" (monotonically, but slower
than proportionally, growing with the series values) or "innov" (proportional to
a smoothed abs size of innovations, i.e. surprises)

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For exponential_smoothing(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "stan" (default) - Connects to Rlgt::rlgt()

Main Arguments
The main arguments (tuning parameters) for the model are:

• seasonality: Seasonality.

• second_seasonality: Second seasonality.

• seasonality_type: Either "multiplicative" (default) or "generalized".

• method: "HW", "seasAvg", "HW_sAvg"

• error_method: Either "std" or "innov"

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine().

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

stan (default engine)
The engine uses Rlgt::rlgt().

Parameter Notes:

• xreg - This is supplied via the parsnip / bayesmodels fit() interface (so don’t provide this
manually). See Fit Details (below).
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Value

A model spec

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface: fit(y ~ date) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
The xreg parameter is populated using the fit() function:

• Only factor, ordered factor, and numeric data will be used as xregs.

• Date and Date-time variables are not used as xregs

• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)

2. date (time stamp),

3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the expotential_smoothing()
using fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)

# Data



18 exponential_smoothing_params

m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)

# ---- ARIMA ----

# Model Spec
model_spec <- exponential_smoothing() %>%

set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date + month(date), data = training(splits))
model_fit

## End(Not run)

exponential_smoothing_params

Tuning Parameters for Exponential Smoothing Models

Description

Tuning Parameters for Exponential Smoothing Models

Usage

seasonality_type()

method()

error_method()

Details

The main parameters for Exponential Smoothing models are:

• garch_order: Integer with the garch order.

• arch_order: Integer with the arch_order.

• mgarch_order: Integer with the mgarch order.

• garch_t_student: A boolean value to specify for a generalized t-student garch model.

• asymmetry: a string value for the asymmetric function for an asymmetric GARCH process.
By default the value "none" for standard GARCH process. If "logit" a logistic function is used
for asymmetry, and if "exp" an exponential function is used.

• non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.
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• non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.

• markov_chains: The number of markov chains.

• adapt_delta: The thin of the jumps in a HMC method

• tree_depth: Maximum depth of the trees

Value

A parameter

A parameter

A parameter

Examples

non_seasonal_ar()

non_seasonal_differences()

non_seasonal_ma()

exp_smoothing_stan_fit_impl

Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

exp_smoothing_stan_fit_impl(
x,
y,
seasonality = 1,
seasonality2 = 1,
seasonality.type = "multiplicative",
error.size.method = "std",
level.method = "HW",
...

)
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Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

seasonality Seasonality

seasonality2 Second seasonality
seasonality.type

Either "multiplicative" (default) or "generalized". The latter seasonality gener-
alizes additive and multiplicative seasonality types.

error.size.method

Either "std" (monotonically, but slower than proportionally, growing with the
series values) or "innov" (proportional to a smoothed abs size of innovations,
i.e. surprises)

level.method "HW", "seasAvg", "HW_sAvg"

... Additional arguments passed to forecast::Arima

Value

A modeltime model

exp_smoothing_stan_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

exp_smoothing_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to forecast::Arima()

Value

A prediction
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garch_params Tuning Parameters for GARCHA Models

Description

Tuning Parameters for GARCHA Models

Usage

garch_order(range = c(0L, 3L), trans = NULL)

arch_order(range = c(0L, 3L), trans = NULL)

mgarch_order(range = c(0L, 3L), trans = NULL)

garch_t_student()

asymmetry()

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

The main parameters for GARCHA models are:

• garch_order: Integer with the garch order.

• arch_order: Integer with the arch_order.

• mgarch_order: Integer with the mgarch order.

• garch_t_student: A boolean value to specify for a generalized t-student garch model.

• asymmetry: a string value for the asymmetric function for an asymmetric GARCH process.
By default the value "none" for standard GARCH process. If "logit" a logistic function is used
for asymmetry, and if "exp" an exponential function is used.

• non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.

• non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.

• markov_chains: The number of markov chains.

• adapt_delta: The thin of the jumps in a HMC method

• tree_depth: Maximum depth of the trees
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Value

A parameter

A parameter

A parameter

A parameter

A parameter

Examples

non_seasonal_ar()

non_seasonal_differences()

non_seasonal_ma()

garch_reg General Interface for GARCH Regression Models

Description

garch_reg() is a way to generate a specification of a GARCH model before fitting and allows the
model to be created using different packages. Currently the only package is bayesforecast.

Usage

garch_reg(
mode = "regression",
garch_order = NULL,
arch_order = NULL,
mgarch_order = NULL,
non_seasonal_ar = NULL,
non_seasonal_ma = NULL,
garch_t_student = NULL,
asymmetry = NULL,
markov_chains = NULL,
chain_iter = NULL,
warmup_iter = NULL,
adapt_delta = NULL,
tree_depth = NULL,
pred_seed = NULL

)
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Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

garch_order Integer with the garch order.

arch_order Integer with the arch_order.

mgarch_order Integer with the mgarch order.
non_seasonal_ar

The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in
pdq-notation.

non_seasonal_ma

The order of the non-seasonal moving average (MA) terms. Often denoted "q"
in pdq-notation

garch_t_student

A boolean value to specify for a generalized t-student garch model.

asymmetry a string value for the asymmetric function for an asymmetric GARCH process.
By default the value "none" for standard GARCH process. If "logit" a logistic
function is used for asymmetry, and if "exp" an exponential function is used.

markov_chains An integer of the number of Markov Chains chains to be run, by default 4 chains
are run.

chain_iter An integer of total iterations per chain including the warm-up, by default the
number of iterations are 2000.

warmup_iter A positive integer specifying number of warm-up (aka burn-in) iterations. This
also specifies the number of iterations used for step-size adaptation, so warm-up
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

adapt_delta An optional real value between 0 and 1, the thin of the jumps in a HMC method.
By default is 0.9

tree_depth An integer of the maximum depth of the trees evaluated during each iteration.
By default is 10.

pred_seed An integer with the seed for using when predicting with the model.

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For garch_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "stan" (default) - Connects to bayesforecast::stan_garch()

Main Arguments
The main arguments (tuning parameters) for the model are:

• arch_order: Integer with the arch_order.

• garch_order: Integer with the garch_order.
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• mgarch_order: Integer with the mgarch_order.

• garch_t_student: A boolean value to specify for a generalized t-student garch model.

• asymmetry: a string value for the asymmetric function for an asymmetric GARCH process.

• non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.

• non_seasonal_ma: The order of the non-seasonal moving average (MA)

• markov_chains: An integer of the number of Markov Chains chains to be run.

• adapt_delta: The thin of the jumps in a HMC method.

• tree_depth: The maximum depth of the trees evaluated during each iteration.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

Value

A model spec

Engine Details

The standardized parameter names in bayesforecast can be mapped to their original names in
each engine:

bayesmodels bayesforecast::stan_garch
arch_order, garch_order, mgarch_order order = c(s(1), k(1), h(0))
non_seasonal_ar, non_seasonal_ma arma = c(p(1), q(0))
garch_t_student genT(FALSE)
assymetry asym(’none’)
markov_chains chains(4)
adapt_delta adapt.delta(0.9)
tree_depth tree.depth(10)

Other options can be set using set_engine().

stan (default engine)
The engine uses bayesforecast::stan_garch().

Parameter Notes:

• xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this
manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.
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• fit(y ~ date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For
monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period
= "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto": A seasonal period is selected based on the periodicity of the
data (e.g. 12 if monthly)

2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
The xreg parameter is populated using the fit() or fit_xy() function:

• Only factor, ordered factor, and numeric data will be used as xregs.

• Date and Date-time variables are not used as xregs

• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)

2. date (time stamp),

3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the garch_reg() using fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)
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# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)

# ---- AUTO ARIMA ----

# Model Spec
model_spec <- garch_reg() %>%

set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

# Model Spec
model_spec <- garch_reg(

arch_order = 2,
garch_order = 2,
mgarch_order = 1,
non_seasonal_ar = 1,
non_seasonal_ma = 1

) %>%
set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

## End(Not run)

garch_stan_fit_impl Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

garch_stan_fit_impl(
x,
y,
s = 1,
k = 1,
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h = 1,
p = 0,
q = 0,
genT = FALSE,
asym = "none",
chains = 4,
iter = 2000,
warmup = iter/2,
adapt.delta = 0.9,
tree.depth = 10,
seed = NULL,
...

)

Arguments

x A dataframe of xreg (exogenous regressors)
y A numeric vector of values to fit
s garch_order
k arch_order
h mgarch_order
p The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in

pdq-notation.
q The order of the non-seasonal moving average (MA) terms. Often denoted "q"

in pdq-notation.
genT a boolean value to specify for a generalized t-student garch model.
asym a string value for the asymmetric function for an asymmetric GARCH process.
chains An integer of the number of Markov Chains chains to be run, by default 4 chains

are run.
iter An integer of total iterations per chain including the warm-up, by default the

number of iterations are 2000.
warmup A positive integer specifying number of warm-up (aka burn-in) iterations. This

also specifies the number of iterations used for step-size adaptation, so warm-up
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

adapt.delta An optional real value between 0 and 1, the thin of the jumps in a HMC method.
By default is 0.9

tree.depth An integer of the maximum depth of the trees evaluated during each iteration.
By default is 10.

seed An integer with the seed for using when predicting with the model.
... Additional arguments passed to forecast::Arima

Value

A modeltime model
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garch_stan_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

garch_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to forecast::Arima()

Value

A prediction

gen_additive_reg Interface for Generalized Additive Models (GAM)

Description

Interface for Generalized Additive Models (GAM)

Usage

gen_additive_reg(
mode = "regression",
markov_chains = NULL,
chain_iter = NULL,
warmup_iter = NULL,
adapt_delta = NULL

)
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Arguments

mode A single character string for the type of model.
markov_chains Number of Markov chains (defaults to 4).
chain_iter Number of total iterations per chain (including warmup; defaults to 2000).
warmup_iter A positive integer specifying number of warmup (aka burnin) iterations. This

also specifies the number of iterations used for stepsize adaptation, so warmup
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

adapt_delta The thin of the jumps in a HMC method.

Details

Available Engines:

• stan: Connects to brms::brm()

Value

A parsnip model specification

A model spec

Engine Details

stan
This engine uses brms::brm() and has the following parameters, which can be modified through
the parsnip::set_engine() function.

## function (formula, data, family = gaussian(), prior = NULL, autocor = NULL,
## data2 = NULL, cov_ranef = NULL, sample_prior = "no", sparse = NULL,
## knots = NULL, stanvars = NULL, stan_funs = NULL, fit = NA, save_pars = NULL,
## save_ranef = NULL, save_mevars = NULL, save_all_pars = NULL, inits = "random",
## chains = 4, iter = 2000, warmup = floor(iter/2), thin = 1, cores = getOption("mc.cores",
## 1), threads = NULL, normalize = getOption("brms.normalize", TRUE),
## control = NULL, algorithm = getOption("brms.algorithm", "sampling"),
## backend = getOption("brms.backend", "rstan"), future = getOption("future",
## FALSE), silent = 1, seed = NA, save_model = NULL, stan_model_args = list(),
## file = NULL, file_refit = "never", empty = FALSE, rename = TRUE, ...)

Fit Details

BRMS Formula Interface
Fitting GAMs is accomplished using parameters including:

• brms::s(): GAM spline smooths
• brms::t2(): GAM tensor product smooths

These are applied in the fit() function:

fit(value ~ s(date_mon, k = 12) + s(date_num), data = df)
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Examples

## Not run:
library(tidymodels)
library(bayesmodels)
library(modeltime)
library(tidyverse)
library(timetk)
library(lubridate)

m750_extended <- m750 %>%
group_by(id) %>%
future_frame(.length_out = 24, .bind_data = TRUE) %>%
mutate(lag_24 = lag(value, 24)) %>%
ungroup() %>%
mutate(date_num = as.numeric(date)) %>%
mutate(date_month = month(date))

m750_train <- m750_extended %>% drop_na()
m750_future <- m750_extended %>% filter(is.na(value))

model_fit_gam <- gen_additive_reg(mode = "regression", markov_chains = 2) %>%
set_engine("stan", family=Gamma(link="log")) %>%
fit(value ~ date + s(date_month, k = 12)

+ s(lag_24),
data = m750_train)

## End(Not run)

gen_additive_stan_fit_impl

Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

gen_additive_stan_fit_impl(
formula,
data,
chains = 4,
iter = 2000,
warmup = 1000,
...

)
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Arguments

formula A dataframe of xreg (exogenous regressors)

data A numeric vector of values to fit

chains An integer of the number of Markov Chains chains to be run, by default 4 chains
are run.

iter An integer of total iterations per chain including the warm-up, by default the
number of iterations are 2000.

warmup A positive integer specifying number of warm-up (aka burn-in) iterations. This
also specifies the number of iterations used for step-size adaptation, so warm-up
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

... Additional arguments passed to forecast::Arima

Value

A modeltime model

gen_additive_stan_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

gen_additive_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to forecast::Arima()

Value

A prediction
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naive_params Tuning Parameters for Random Walk Models

Description

Tuning Parameters for Random Walk Models

Usage

seasonal_random_walk()

Details

The main parameters for Random Walk Models are:

• seasonal_random_walk: A boolean value for select a seasonal random walk instead.
• markov_chains: The number of markov chains.
• adapt_delta: The thin of the jumps in a HMC method
• tree_depth: Maximum depth of the trees

Value

A parameter

random_walk_reg General Interface for Naive and Random Walk models Regression
Models

Description

random_walk_reg() is a way to generate a specification of Naive and Random Walk models before
fitting and allows the model to be created using different packages. Currently the only package is
bayesforecast.

Usage

random_walk_reg(
mode = "regression",
seasonal_random_walk = NULL,
seasonal_period = NULL,
markov_chains = NULL,
chain_iter = NULL,
warmup_iter = NULL,
adapt_delta = NULL,
tree_depth = NULL,
pred_seed = NULL

)
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Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

seasonal_random_walk

a Boolean value for select a seasonal random walk instead.
seasonal_period

an optional integer value for the seasonal period.

markov_chains An integer of the number of Markov Chains chains to be run, by default 4 chains
are run.

chain_iter An integer of total iterations per chain including the warm-up, by default the
number of iterations are 2000.

warmup_iter A positive integer specifying number of warm-up (aka burn-in) iterations. This
also specifies the number of iterations used for step-size adaptation, so warm-up
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

adapt_delta An optional real value between 0 and 1, the thin of the jumps in a HMC method.
By default is 0.9

tree_depth An integer of the maximum depth of the trees evaluated during each iteration.
By default is 10.

pred_seed An integer with the seed for using when predicting with the model.

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For random_walk_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "stan" (default) - Connects to bayesforecast::stan_naive()

Main Arguments
The main arguments (tuning parameters) for the model are:

• seasonal_random_walk: a Boolean value for select a seasonal random walk instead.

• markov_chains: An integer of the number of Markov Chains chains to be run.

• adapt_delta: The thin of the jumps in a HMC method.

• tree_depth: The maximum depth of the trees evaluated during each iteration.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

Value

A model spec
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Engine Details

The standardized parameter names in bayesmodels can be mapped to their original names in each
engine:

bayesmodels bayesforecast::stan_naive
seasonal_random_walk seasonal
markov_chains chains(4)
adapt_delta adapt.delta(0.9)
tree_depth tree.depth(10)

Other options can be set using set_engine().

stam (default engine)

The engine uses bayesforecast::stan_naive().

Fit Details

Date and Date-Time Variable

It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For
monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period
= "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto": A seasonal period is selected based on the periodicity of the
data (e.g. 12 if monthly)

2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate (No xregs, Exogenous Regressors):

For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

See Also

fit.model_spec(), set_engine()
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Examples

## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)

# Model Spec
model_spec <- random_walk_reg() %>%

set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

## End(Not run)

random_walk_stan_fit_impl

Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

random_walk_stan_fit_impl(
x,
y,
seasonal = FALSE,
m = 0,
chains = 4,
iter = 2000,
warmup = iter/2,
adapt.delta = 0.9,
tree.depth = 10,
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seed = NULL,
...

)

Arguments

x A dataframe of xreg (exogenous regressors)
y A numeric vector of values to fit
seasonal a Boolean value for select a seasonal random walk instead
m an optional integer value for the seasonal period.
chains An integer of the number of Markov Chains chains to be run, by default 4 chains

are run.
iter An integer of total iterations per chain including the warm-up, by default the

number of iterations are 2000.
warmup A positive integer specifying number of warm-up (aka burn-in) iterations. This

also specifies the number of iterations used for step-size adaptation, so warm-up
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

adapt.delta An optional real value between 0 and 1, the thin of the jumps in a HMC method.
By default is 0.9

tree.depth An integer of the maximum depth of the trees evaluated during each iteration.
By default is 10.

seed An integer with the seed for using when predicting with the model.
... Additional arguments passed to forecast::Arima

Value

A modeltime model

random_walk_stan_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

random_walk_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit
new_data A rectangular data object, such as a data frame.
... Additional arguments passed to forecast::Arima()
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Value

A prediction

sarima_params Tuning Parameters for SARIMA Models

Description

Tuning Parameters for SARIMA Models

Usage

non_seasonal_ar(range = c(0L, 5L), trans = NULL)

non_seasonal_differences(range = c(0L, 2L), trans = NULL)

non_seasonal_ma(range = c(0L, 5L), trans = NULL)

seasonal_ar(range = c(0L, 2L), trans = NULL)

seasonal_differences(range = c(0L, 1L), trans = NULL)

seasonal_ma(range = c(0L, 2L), trans = NULL)

markov_chains(range = c(0L, 8L), trans = NULL)

adapt_delta(range = c(0, 1), trans = NULL)

tree_depth(range = c(0L, 100L), trans = NULL)

Arguments

range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.

trans A trans object from the scales package, such as scales::log10_trans()
or scales::reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.

Details

The main parameters for SARIMA models are:

• non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.

• non_seasonal_differences: The order of integration for non-seasonal differencing.

• non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.

• seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.
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• seasonal_differences: The order of integration for seasonal differencing.

• seasonal_ma: The order of the seasonal moving average (SMA) terms.

• markov_chains: The number of markov chains.

• adapt_delta: The thin of the jumps in a HMC method

• tree_depth: Maximum depth of the trees

Value

A parameter

A parameter

A parameter

A parameter

A parameter

A parameter

A parameter

A parameter

A parameter

Examples

non_seasonal_ar()

non_seasonal_differences()

non_seasonal_ma()

sarima_reg General Interface for ARIMA Regression Models

Description

sarima_reg() is a way to generate a specification of an ARIMA model before fitting and allows
the model to be created using different packages. Currently the only package is bayesforecast.

Usage

sarima_reg(
mode = "regression",
seasonal_period = NULL,
non_seasonal_ar = NULL,
non_seasonal_differences = NULL,
non_seasonal_ma = NULL,
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seasonal_ar = NULL,
seasonal_differences = NULL,
seasonal_ma = NULL,
markov_chains = NULL,
chain_iter = NULL,
warmup_iter = NULL,
adapt_delta = NULL,
tree_depth = NULL,
pred_seed = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

seasonal_period

A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided. See Fit Details below.

non_seasonal_ar

The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in
pdq-notation.

non_seasonal_differences

The order of integration for non-seasonal differencing. Often denoted "d" in
pdq-notation.

non_seasonal_ma

The order of the non-seasonal moving average (MA) terms. Often denoted "q"
in pdq-notation.

seasonal_ar The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in
PDQ-notation.

seasonal_differences

The order of integration for seasonal differencing. Often denoted "D" in PDQ-
notation.

seasonal_ma The order of the seasonal moving average (SMA) terms. Often denoted "Q" in
PDQ-notation.

markov_chains An integer of the number of Markov Chains chains to be run, by default 4 chains
are run.

chain_iter An integer of total iterations per chain including the warm-up, by default the
number of iterations are 2000.

warmup_iter A positive integer specifying number of warm-up (aka burn-in) iterations. This
also specifies the number of iterations used for step-size adaptation, so warm-up
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

adapt_delta An optional real value between 0 and 1, the thin of the jumps in a HMC method.
By default is 0.9
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tree_depth An integer of the maximum depth of the trees evaluated during each iteration.
By default is 10.

pred_seed An integer with the seed for using when predicting with the model.

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For sarima_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "stan" (default) - Connects to bayesforecast::stan_sarima()

Main Arguments
The main arguments (tuning parameters) for the model are:

• non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.

• non_seasonal_differences: The order of integration for non-seasonal differencing.

• non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.

• seasonal_ar: The order of the seasonal auto-regressive (SAR) terms.

• seasonal_differences: The order of integration for seasonal differencing.

• seasonal_ma: The order of the seasonal moving average (SMA) terms.

• markov_chains: An integer of the number of Markov Chains chains to be run.

• adapt_delta: The thin of the jumps in a HMC method.

• tree_depth: The maximum depth of the trees evaluated during each iteration

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

Value

A model spec

Engine Details

The standardized parameter names in bayesmodels can be mapped to their original names in the
engine:

bayesmodels bayesforecast::stan_sarima
non_seasonal_ar, non_seasonal_differences, non_seasonal_ma order = c(p(1), d(0), q(0))
seasonal_ar, seasonal_differences, seasonal_ma seasonal = c(P(0), D(0), Q(0))
markov_chains chains(4)
adapt_delta adapt.delta(0.9)
tree_depth tree.depth(10)
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Other options can be set using set_engine().

stan (default engine)
The engine uses bayesforecast::stan_sarima().

Parameter Notes:

• xreg - This is supplied via the parsnip / bayesmodels fit() interface (so don’t provide this
manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For
monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period
= "yearly"). There are 3 ways to specify:

1. seasonal_period = "auto": A seasonal period is selected based on the periodicity of the
data (e.g. 12 if monthly)

2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface: fit(y ~ date) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
The xreg parameter is populated using the fit() function:

• Only factor, ordered factor, and numeric data will be used as xregs.

• Date and Date-time variables are not used as xregs

• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)

2. date (time stamp),

3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the sarima_reg() using fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.
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See Also

fit.model_spec(), set_engine()

Examples

## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)

# ---- ARIMA ----

# Model Spec
model_spec <- sarima_reg() %>%

set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

# Model Spec
model_spec <- sarima_reg(

seasonal_period = 12,
non_seasonal_ar = 3,
non_seasonal_differences = 1,
non_seasonal_ma = 3,
seasonal_ar = 1,
seasonal_differences = 0,
seasonal_ma = 1

) %>%
set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

## End(Not run)
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Sarima_stan_fit_impl Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

Sarima_stan_fit_impl(
x,
y,
period = "auto",
p = 0,
d = 0,
q = 0,
P = 0,
D = 0,
Q = 0,
chains = 4,
iter = 2000,
warmup = iter/2,
adapt.delta = 0.9,
tree.depth = 10,
seed = NULL,
...

)

Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

period A seasonal frequency. Uses "auto" by default. A character phrase of "auto" or
time-based phrase of "2 weeks" can be used if a date or date-time variable is
provided.

p The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in
pdq-notation.

d The order of integration for non-seasonal differencing. Often denoted "d" in
pdq-notation.

q The order of the non-seasonal moving average (MA) terms. Often denoted "q"
in pdq-notation.

P The order of the seasonal auto-regressive (SAR) terms. Often denoted "P" in
PDQ-notation.

D The order of integration for seasonal differencing. Often denoted "D" in PDQ-
notation.
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Q The order of the seasonal moving average (SMA) terms. Often denoted "Q" in
PDQ-notation.

chains An integer of the number of Markov Chains chains to be run, by default 4 chains
are run.

iter An integer of total iterations per chain including the warm-up, by default the
number of iterations are 2000.

warmup A positive integer specifying number of warm-up (aka burn-in) iterations. This
also specifies the number of iterations used for step-size adaptation, so warm-up
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

adapt.delta An optional real value between 0 and 1, the thin of the jumps in a HMC method.
By default is 0.9

tree.depth An integer of the maximum depth of the trees evaluated during each iteration.
By default is 10.

seed An integer with the seed for using when predicting with the model.

... Additional arguments passed to forecast::Arima

Value

A modeltime model

Sarima_stan_predict_impl

Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

Sarima_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to forecast::Arima()

Value

A prediction
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ssm_params Tuning Parameters for Additive Linear State Space Regression Models

Description

Tuning Parameters for Additive Linear State Space Regression Models

Usage

trend_model()

damped_model()

seasonal_model()

Details

The main parameters for Additive Linear State Space Regression Models are:

• trend_model: A boolean value to specify a trend local level model.

• damped_model: A boolean value to specify a damped trend local level model.

• seasonal_model: A boolean value to specify a seasonal trend local level model.

• markov_chains: The number of markov chains.

• adapt_delta: The thin of the jumps in a HMC method

• tree_depth: Maximum depth of the trees

Value

A parameter

A parameter

A parameter

Examples

damped_model()

seasonal_model()
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ssm_stan_fit_impl Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

ssm_stan_fit_impl(
x,
y,
trend = FALSE,
damped = FALSE,
seasonal = FALSE,
period = 0,
genT = FALSE,
chains = 4,
iter = 2000,
warmup = iter/2,
adapt.delta = 0.9,
tree.depth = 10,
seed = NULL,
...

)

Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

trend a boolean value to specify a trend local level model. By default is FALSE.

damped a boolean value to specify a damped trend local level model. By default is
FALSE.

seasonal a boolean value to specify a seasonal local level model.

period an integer specifying the periodicity of the time series.

genT a boolean value to specify for a generalized t-student SSM model.

chains An integer of the number of Markov Chains chains to be run, by default 4 chains
are run.

iter An integer of total iterations per chain including the warm-up, by default the
number of iterations are 2000.

warmup A positive integer specifying number of warm-up (aka burn-in) iterations. This
also specifies the number of iterations used for step-size adaptation, so warm-up
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.
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adapt.delta An optional real value between 0 and 1, the thin of the jumps in a HMC method.
By default is 0.9

tree.depth An integer of the maximum depth of the trees evaluated during each iteration.
By default is 10.

seed An integer with the seed for using when predicting with the model.

... Additional arguments passed to forecast::Arima

Value

A modeltime model

ssm_stan_predict_impl Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

ssm_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to forecast::Arima()

Value

A prediction

svm_reg General Interface for Stochastic Volatility Regression Models

Description

svm_reg() is a way to generate a specification of a Stochastic volatility model before fitting and al-
lows the model to be created using different packages. Currently the only package is bayesforecast.
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Usage

svm_reg(
mode = "regression",
non_seasonal_ar = NULL,
non_seasonal_ma = NULL,
markov_chains = NULL,
chain_iter = NULL,
warmup_iter = NULL,
adapt_delta = NULL,
tree_depth = NULL,
pred_seed = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

non_seasonal_ar

The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in
pdq-notation.

non_seasonal_ma

The order of the non-seasonal moving average (MA) terms. Often denoted "q"
in pdq-notation

markov_chains An integer of the number of Markov Chains chains to be run, by default 4 chains
are run.

chain_iter An integer of total iterations per chain including the warm-up, by default the
number of iterations are 2000.

warmup_iter A positive integer specifying number of warm-up (aka burn-in) iterations. This
also specifies the number of iterations used for step-size adaptation, so warm-up
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

adapt_delta An optional real value between 0 and 1, the thin of the jumps in a HMC method.
By default is 0.9

tree_depth An integer of the maximum depth of the trees evaluated during each iteration.
By default is 10.

pred_seed An integer with the seed for using when predicting with the model.

Details

The data given to the function are not saved and are only used to determine the mode of the model.
For svm_reg(), the mode will always be "regression".

The model can be created using the fit() function using the following engines:

• "stan" (default) - Connects to bayesforecast::stan_SVM()

Main Arguments
The main arguments (tuning parameters) for the model are:
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• non_seasonal_ar: The order of the non-seasonal auto-regressive (AR) terms.

• non_seasonal_ma: The order of the non-seasonal moving average (MA) terms.

• markov_chains: An integer of the number of Markov Chains chains to be run.

• adapt_delta: The thin of the jumps in a HMC method.

• tree_depth: The maximum depth of the trees evaluated during each iteration.

These arguments are converted to their specific names at the time that the model is fit.

Other options and argument can be set using set_engine() (See Engine Details below).

If parameters need to be modified, update() can be used in lieu of recreating the object from
scratch.

Value

A model spec

Engine Details

The standardized parameter names in bayesmodels can be mapped to their original names in each
engine:

bayesmodels bayesforecast::stan_SVM
non_seasonal_ar, non_seasonal_ma arma(0, 0)
markov_chains chains(4)
adapt_delta adapt.delta(0.9)
tree_depth tree.depth(10)

Other options can be set using set_engine().

stan (default engine)
The engine uses bayesforecast::stan_SVM().

Parameter Notes:

• xreg - This is supplied via the parsnip / modeltime fit() interface (so don’t provide this
manually). See Fit Details (below).

Fit Details

Date and Date-Time Variable
It’s a requirement to have a date or date-time variable as a predictor. The fit() interface accepts
date and date-time features and handles them internally.

• fit(y ~ date)

Seasonal Period Specification

The period can be non-seasonal (seasonal_period = 1 or "none") or yearly seasonal (e.g. For
monthly time stamps, seasonal_period = 12, seasonal_period = "12 months", or seasonal_period
= "yearly"). There are 3 ways to specify:
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1. seasonal_period = "auto": A seasonal period is selected based on the periodicity of the
data (e.g. 12 if monthly)

2. seasonal_period = 12: A numeric frequency. For example, 12 is common for monthly data

3. seasonal_period = "1 year": A time-based phrase. For example, "1 year" would convert to
12 for monthly data.

Univariate (No xregs, Exogenous Regressors):
For univariate analysis, you must include a date or date-time feature. Simply use:

• Formula Interface (recommended): fit(y ~ date) will ignore xreg’s.

Multivariate (xregs, Exogenous Regressors)
The xreg parameter is populated using the fit() or fit_xy() function:

• Only factor, ordered factor, and numeric data will be used as xregs.

• Date and Date-time variables are not used as xregs

• character data should be converted to factor.

Xreg Example: Suppose you have 3 features:

1. y (target)

2. date (time stamp),

3. month.lbl (labeled month as a ordered factor).

The month.lbl is an exogenous regressor that can be passed to the arima_reg() using fit():

• fit(y ~ date + month.lbl) will pass month.lbl on as an exogenous regressor.

Note that date or date-time class values are excluded from xreg.

See Also

fit.model_spec(), set_engine()

Examples

## Not run:
library(dplyr)
library(parsnip)
library(rsample)
library(timetk)
library(modeltime)
library(bayesmodels)

# Data
m750 <- m4_monthly %>% filter(id == "M750")
m750

# Split Data 80/20
splits <- rsample::initial_time_split(m750, prop = 0.8)
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# Model Spec
model_spec <- svm_reg() %>%

set_engine("stan")

# Fit Spec
model_fit <- model_spec %>%

fit(log(value) ~ date, data = training(splits))
model_fit

## End(Not run)

svm_stan_fit_impl Low-Level ARIMA function for translating modeltime to forecast

Description

Low-Level ARIMA function for translating modeltime to forecast

Usage

svm_stan_fit_impl(
x,
y,
p = 0,
q = 0,
chains = 4,
iter = 2000,
warmup = iter/2,
adapt.delta = 0.9,
tree.depth = 10,
seed = NULL,
...

)

Arguments

x A dataframe of xreg (exogenous regressors)

y A numeric vector of values to fit

p The order of the non-seasonal auto-regressive (AR) terms. Often denoted "p" in
pdq-notation.

q The order of the non-seasonal moving average (MA) terms. Often denoted "q"
in pdq-notation.

chains An integer of the number of Markov Chains chains to be run, by default 4 chains
are run.
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iter An integer of total iterations per chain including the warm-up, by default the
number of iterations are 2000.

warmup A positive integer specifying number of warm-up (aka burn-in) iterations. This
also specifies the number of iterations used for step-size adaptation, so warm-up
samples should not be used for inference. The number of warmup should not be
larger than iter and the default is iter/2.

adapt.delta An optional real value between 0 and 1, the thin of the jumps in a HMC method.
By default is 0.9

tree.depth An integer of the maximum depth of the trees evaluated during each iteration.
By default is 10.

seed An integer with the seed for using when predicting with the model.

... Additional arguments passed to forecast::Arima

Value

A modeltime model

svm_stan_predict_impl Bridge prediction function for ARIMA models

Description

Bridge prediction function for ARIMA models

Usage

svm_stan_predict_impl(object, new_data, ...)

Arguments

object An object of class model_fit

new_data A rectangular data object, such as a data frame.

... Additional arguments passed to forecast::Arima()

Value

A prediction
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