Cox Shared Nested Additive Joint standard (Bivariate: 1 RE + 1 TE) Joint cluster (Bivariate: 1 RE + 1 TE) Joint general (Bivariate: 1 RE + 1 TE) Joint nested (Bivariate: 1 RE + 1 TE) Joint longitudinal (Bivariate: 1 LO + 1 TE) Joint trivariate (Trivariate: 1 LO + 1 RE + 1 TE) Joint non linear trivariate (Trivariate: 1 LO + 1 RE + 1 TE) Joint Multivariate (Trivariate: 2 RE + 1 TE) Joint surrogate (Bivariate: 2 TE) Conditional two-part joint (Trivariate: 2 LO 1 TE) Marginal two-part joint (Trivariate: 2 LO 1 TE) Shared Frailty GSM Joint Frailty GSM (Bivariate: 1 RE + 1 TE)
Available options
Family (PHM, AHM, POM, PROM)
Gamma distribution
Log-Normal distribution
Interval Censoring
Two strata
More strata (max=6)
Time-dependant covariates
Calendar timescale
Log-logistic, log-normal
Available output
Predicted frailties
Variances of the frailties
Martingale residuals
Prediction methods
Marginal prediction of a terminal event
Conditional prediction of a terminal event
Marginal prediction of a new recurrent event
Conditional prediction of a new recurrent event
Model evaluation
Model structure
Prediction of treatment effects
Statistical model
Mechanistic model (ODE)
Mediation analysis

Table 1: Package characteristics. Blue cross is for option available for a given type of model in the package on CRAN, orange cross is for option included in the package but not on CRAN yet. Empty cells mean that an option is not available for a given type of model (either not coded yet or simply not applicable). RE = Recurrent Event; TE = Terminal Event; LO = Longitudinal Outcome; STE = Surrogate threshold effect; ODE = Ordinary Differential Equation; GSM = Generalized Survival Model; PHM = Proportional Hazards Model; AHM = Additive Hazards Model; POM = Proportional Odds Model; PROM = Probit Model.


Agnieszka Krol, Audrey Mauguen, Yassin Mazroui, Alexandre Laurent, Stefan Michiels, Virginie Rondeau (2017), Tutorial in Joint Modeling and Prediction: A Statistical Software for Correlated Longitudinal Outcomes, Recurrent Events and a Terminal Event. Journal of Statistical Software, 81.

Casimir Ledoux Sofeu and Virginie Rondeau (2020). [How to use frailtypack for validating failure-time surrogate endpoints using individual patient data from meta-analyses of randomized controlled trials.] ( PLOS ONE, 15, 1-25.


A shiny application of frailtypack is available, allowing modelisation and prediction of several models presents in frailtypack, at This application can be run in a local mode in R thanks to the function runShiny().


If you want to take in charge frailtypack as a project, but work on a macOSX with a version of R >= 3.6, a problem must happen between openmp and clang. clang does not seem to support option ‘-fopenmp’. To avoid this, you should edit your personal Makevars (~/.R/Makevars), admitting you use gfortran, by relocating CC=clang by CC=gfortran