performance: Assessment of Regression Models Performance

Utilities for computing measures to assess model quality, which are not directly provided by R's 'base' or 'stats' packages. These include e.g. measures like r-squared, intraclass correlation coefficient (Nakagawa, Johnson & Schielzeth (2017) <doi:10.1098/rsif.2017.0213>), root mean squared error or functions to check models for overdispersion, singularity or zero-inflation and more. Functions apply to a large variety of regression models, including generalized linear models, mixed effects models and Bayesian models.

Version: 0.5.1
Depends: R (≥ 3.5)
Imports: insight (≥ 0.10.0), bayestestR (≥ 0.7.5), stats, utils
Suggests: AER, BayesFactor, betareg, bigutilsr, brms, car, covr, cplm, dbscan, fixest, forecast, ggplot2, gridExtra, glmmTMB, ICS, ICSOutlier, lavaan, lme4, loo, Matrix, MASS, metafor, mlogit, nlme, ordinal, parallel, parameters, pscl, psych, randomForest, rmarkdown, rstanarm, rstantools, see, survey, survival, testthat, tweedie, VGAM, spelling
Published: 2020-10-29
Author: Daniel Lüdecke ORCID iD [aut, cre], Dominique Makowski ORCID iD [aut, ctb], Philip Waggoner ORCID iD [aut, ctb], Indrajeet Patil ORCID iD [aut, ctb], Mattan S. Ben-Shachar ORCID iD [aut, ctb]
Maintainer: Daniel Lüdecke <d.luedecke at uke.de>
BugReports: https://github.com/easystats/performance/issues
License: GPL-3
URL: https://easystats.github.io/performance/
NeedsCompilation: no
Language: en-US
Citation: performance citation info
Materials: README NEWS
CRAN checks: performance results

Downloads:

Reference manual: performance.pdf
Package source: performance_0.5.1.tar.gz
Windows binaries: r-devel: performance_0.5.1.zip, r-release: performance_0.5.1.zip, r-oldrel: performance_0.5.1.zip
macOS binaries: r-release: performance_0.5.1.tgz, r-oldrel: performance_0.5.1.tgz
Old sources: performance archive

Reverse dependencies:

Reverse imports: broomExtra, drhur, psycho, sjPlot, sjstats, statsExpressions, tidyBF
Reverse suggests: bayestestR, effectsize, parameters, see, specr

Linking:

Please use the canonical form https://CRAN.R-project.org/package=performance to link to this page.