Use the labelled_spss_survey()
helper function to create vectors of class retroharmonize_labelled_spss_survey.
sl1 <- labelled_spss_survey (
x = c(1,1,0,8,8,8),
labels = c("yes" =1,
"no" = 0,
"declined" = 8),
label = "Do you agree?",
na_values = 8,
id = "survey1")
print(sl1)
#> [1] 1 1 0 8 8 8
#> attr(,"labels")
#> yes no declined
#> 1 0 8
#> attr(,"label")
#> [1] "Do you agree?"
#> attr(,"na_values")
#> [1] 8
#> attr(,"class")
#> [1] "retroharmonize_labelled_spss_survey" "haven_labelled_spss"
#> [3] "haven_labelled"
#> attr(,"survey1_name")
#> [1] "c(1, 1, 0, 8, 8, 8)"
#> attr(,"survey1_values")
#> 0 1 8
#> 0 1 8
#> attr(,"survey1_label")
#> [1] "Do you agree?"
#> attr(,"survey1_labels")
#> yes no declined
#> 1 0 8
#> attr(,"survey1_na_values")
#> [1] 8
#> attr(,"id")
#> [1] "survey1"
You can check the type:
The labelled_spss_survey()
class inherits some properties from haven::labelled()
, which can be manipulated by the labelled
package (See particularly the vignette Introduction to labelled by Joseph Larmarange.)
It can also be subsetted:
sl1[3:4]
#> [1] 0 8
#> attr(,"labels")
#> yes no declined
#> 1 0 8
#> attr(,"label")
#> [1] "Do you agree?"
#> attr(,"na_values")
#> [1] 8
#> attr(,"class")
#> [1] "retroharmonize_labelled_spss_survey" "haven_labelled_spss"
#> [3] "haven_labelled"
#> attr(,"survey1_name")
#> [1] "c(1, 1, 0, 8, 8, 8)"
#> attr(,"survey1_values")
#> 0 1 8
#> 0 1 8
#> attr(,"survey1_label")
#> [1] "Do you agree?"
#> attr(,"survey1_labels")
#> yes no declined
#> 1 0 8
#> attr(,"survey1_na_values")
#> [1] 8
#> attr(,"id")
#> [1] "survey1"
When used within the modernized version of data.frame, tibble::tibble()
, the summary of the variable content prints in an informative way.
df <- tibble::tibble (v1 = sl1)
## Use tibble instead of data.frame(v1=sl1) ...
print(df)
#> # A tibble: 6 x 1
#> v1
#> <retroh_dbl>
#> 1 1 [yes]
#> 2 1 [yes]
#> 3 0 [no]
#> 4 8 (NA) [declined]
#> 5 8 (NA) [declined]
#> 6 8 (NA) [declined]
## ... which inherits the methods of a data.frame
subset(df, v1 == 1)
#> # A tibble: 2 x 1
#> v1
#> <retroh_dbl>
#> 1 1 [yes]
#> 2 1 [yes]
To avoid any confusion with mis-labelled surveys, coercion with double or integer vectors will result in a double or integer vector. The use of vctrs::vec_c
is generally safer than base R c()
.
#double
c(sl1, 1/7)
#> [1] 1.0000000 1.0000000 0.0000000 8.0000000 8.0000000 8.0000000 0.1428571
vctrs::vec_c(sl1, 1/7)
#> [1] 1.0000000 1.0000000 0.0000000 8.0000000 8.0000000 8.0000000 0.1428571
Conversion to character works as expected:
The base as.factor
converts to integer and uses the integers as levels, because base R factors are integers with a levels
attribute.
Conversion to factor with as_factor
converts the value labels to factor levels:
Similarly, when converting to numeric types, we have to convert the user-defined missing values to NA
values used in the R language. For numerical analysis, convert with as_numeric
.
The median value is correctly displayed, because user-defined missing values are removed from the calculation. Only a few arithmetic methods are implemented, such as
mean (as.numeric(sl1))
#> [1] 4.333333
mean (sl1)
#> [1] 4.333333
mean (sl1, na.rm=TRUE)
#> [1] 0.6666667
weights1 <- runif (n = 6, min = 0, max = 1)
weighted.mean(as.numeric(sl1), weights1)
#> [1] 4.374383
weighted.mean(sl1, weights1)
#> [1] 4.374383
The result of the conversion to numeric can be used for other mathematical / statistical function.