
Package ‘sarima’
September 29, 2020

Type Package

Title Simulation and Prediction with Seasonal ARIMA Models

Version 0.8.4

Date 2020-09-29

Description Functions, classes and methods for time series modelling with ARIMA
and related models. The aim of the package is to provide consistent
interface for the user. For example, a single function autocorrelations()
computes various kinds of theoretical and sample autocorrelations. This is
work in progress, see the documentation and vignettes for the current
functionality. Function sarima() fits extended multiplicative seasonal
ARIMA models with trends, exogenous variables and arbitrary roots on the
unit circle, which can be fixed or estimated.

URL https://github.com/GeoBosh/sarima

https://geobosh.github.io/sarima/

BugReports https://github.com/GeoBosh/sarima/issues

Depends R (>= 2.10), FitAR, stats4

Imports methods, graphics, stats, utils, PolynomF (>= 1.0-0), Formula,
ltsa, FitARMA, lagged (>= 0.2.1), Rdpack, KFAS, FKF, Rcpp (>=
0.12.14), numDeriv, dplyr

Suggests fGarch, fImport, testthat

RdMacros Rdpack

License GPL (>= 2)

LazyLoad yes

Collate RcppExports.R utils.R generics.R filterClasses.R
modelClasses.R sarima.R autocovariances.R armacalc.R fit.R
wrapKFAS.R arma_Q0dotdotstats.R Kalman.R fitTools.R
periodogram.R predict.Sarima.R zzz.R

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 6.1.1

NeedsCompilation yes

1

https://github.com/GeoBosh/sarima
https://geobosh.github.io/sarima/
https://github.com/GeoBosh/sarima/issues

2 R topics documented:

Author Georgi N. Boshnakov [aut, cre],
Jamie Halliday [aut]

Maintainer Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>

Repository CRAN

Date/Publication 2020-09-29 10:00:14 UTC

R topics documented:
sarima-package . 3
acfGarchTest . 5
acfIidTest . 6
acfMaTest . 8
armaccf_xe . 9
ArmaModel . 11
ArmaModel-class . 13
arma_Q0Gardner . 14
arma_Q0gnb . 15
autocorrelations . 17
autocorrelations-methods . 19
autocovariances-methods . 20
coerce-methods . 20
filterCoef . 22
filterCoef-methods . 24
filterOrder-methods . 26
filterPoly-methods . 27
filterPolyCoef-methods . 28
fun.forecast . 29
InterceptSpec-class . 31
isStationaryModel . 32
modelCenter . 33
modelCoef . 33
modelCoef-methods . 35
modelIntercept . 37
modelOrder . 37
modelOrder-methods . 39
modelPoly-methods . 39
modelPolyCoef-methods . 40
nSeasons . 40
nUnitRoots . 41
nvarOfAcfKP . 42
nvcovOfAcf . 43
partialAutocorrelations-methods . 44
periodogram . 45
plot-methods . 46
prepareSimSarima . 47
sarima . 48
SarimaModel-class . 53

sarima-package 3

sigmaSq . 55
sim_sarima . 56
summary.SarimaModel . 58
whiteNoiseTest . 59
xarmaFilter . 61

Index 64

sarima-package Package sarima Simulation and Prediction with Seasonal ARIMA
Models

Description

Functions, classes and methods for time series modelling with ARIMA and related models. The
aim of the package is to provide consistent interface for the user. For example, a single function
autocorrelations() computes various kinds of theoretical and sample autocorrelations. This is work
in progress, see the documentation and vignettes for the current functionality. Function sarima() fits
extended multiplicative seasonal ARIMA models with trends, exogenous variables and arbitrary
roots on the unit circle, which can be fixed or estimated.

Details

There is a large number of packages for time series modelling. They provide a huge number of func-
tions, often with similar or overlapping functionality and different argument conventions. One of
the aims of package sarima is to provide consistent interface to some frequently used functionality.

In package sarima a consistent naming scheme is used as much as possible. Names of functions
start with a lowercase letter and consist of whole words, acronyms or commonly used abbreviations.
In multiword names, the second and subsequent words start with capital letters (camelCase). Only
the first letter in acronyms is capitalised, e.g. Arma stands for ARMA. Formal (S4) classes follow
the same rules but the first letter of the first word is capitalised, as well.

For example, the functions that compute autocorrelations, autocovariances, partial autocorrelations
are called autocorrelations, autocovariances, and partialAutocorrelations, respectively.
Moreover, they recognise from their argument(s) what exactly is needed. If they are given times se-
ries, they compute sample autocorrelations, etc; if they are given model specifications, they compute
the corresponding theoretical properties.

This is work in progress, see also the vignette(s).

Author(s)

Georgi N. Boshnakov [aut, cre], Jamie Halliday [aut]

Maintainer: Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>

4 sarima-package

References

Boshnakov GN (1996). “Bartlett’s formulae—closed forms and recurrent equations.” Ann. Inst.
Statist. Math., 48, 49–59. doi: 10.1007/BF00049288.

Brockwell PJ, Davis RA (1991). Time series: theory and methods. 2nd ed.. Springer Series in
Statistics. Berlin etc.: Springer-Verlag..

Francq C, Zakoian J (2010). GARCH models: structure, statistical inference and financial applica-
tions. John Wiley & Sons. ISBN 978-0-470-68391-0.

Li WK (2004). Diagnostic checks in time series. Chapman & Hall/CRC Press.

McLeod AI, Yu H, Krougly Z (2007). “Algorithms for Linear Time Series Analysis: With R Pack-
age.” Journal of Statistical Software, 23. https://www.jstatsoft.org/article/view/v023i05.

See Also

ArmaModel autocorrelations

Examples

simulate a white noise ts (model from Francq & Zakoian)
n <- 5000
x <- sarima:::rgarch1p1(n, alpha = 0.3, beta = 0.55, omega = 1, n.skip = 100)

acf and pacf
(x.acf <- autocorrelations(x))
(x.pacf <- partialAutocorrelations(x))

portmanteau test for iid, by default gives also ci's for the acf under H0
x.iid <- whiteNoiseTest(x.acf, h0 = "iid", nlags = c(5,10,20), x = x, method = "LiMcLeod")
x.iid

x.iid2 <- whiteNoiseTest(x.acf, h0 = "iid", nlags = c(5,10,20), x = x, method = "LjungBox")
x.iid2

portmanteau test for garch H0
x.garch <- whiteNoiseTest(x.acf, h0 = "garch", nlags = c(5,10,20), x = x)
x.garch

plot methods give the CI's under H0
plot(x.acf)

if the data are given, the CI's under garch H0 are also given.
plot(x.acf, data = x)

Tests based on partial autocorrelations are also available:
plot(x.pacf)
plot(x.pacf, data = x)

Models
AR
(ar2a1 <- ArModel(ar = c(-0.3, -0.7), sigma2 = 1))
autocorrelations(ar2a1, maxlag = 6)

https://doi.org/10.1007/BF00049288
https://www.jstatsoft.org/article/view/v023i05

acfGarchTest 5

partialAutocorrelations(ar2a1, maxlag = 6)
autocovariances(ar2a1, maxlag = 6)
partialVariances(ar2a1, maxlag = 6)

see examples for ArmaModel()

acfGarchTest Test for GARCH white noise

Description

Carry out a test for GARCH white noise

Usage

acfGarchTest(acr, x, nlags, interval = 0.95)

acfWnTest(acr, x, nlags, interval = 0.95, ...)

Arguments

acr autocorrelations.

x time series.

nlags how many lags to use.

interval If not NULL, compute also confidence intervals with the specified coverage
probability.

... additional arguments for the computation of the variance matrix under the null
hypothesis, passed on to nvarOfAcfKP.

Details

Unlike the autocorrelation IID test, the time series is needed here to estimate the covariance matrix
of the autocorrelations under the null hypothesis.

acfGarchTest performs a test for uncorrelatedness of a time series. The null hypothesis is that the
time series is GARCH, see Francq and Zakoian (2010).

acfWnTest performs a test for uncorrelatedness of a time series under a weaker null hypothesis.
The null hypothesis is that the time series is GARCH-type or from a stochasitc volatily model, see
Kokoszka and Politis (2011).

See the references for details and precise specification of the hypotheses.

The format of the return value is the same as for acfIidTest.

Value

a list with components "test" and "ci"

6 acfIidTest

Author(s)

Georgi N. Boshnakov

References

Francq C, Zakoian J (2010). GARCH models: structure, statistical inference and financial applica-
tions. John Wiley & Sons. ISBN 978-0-470-68391-0.

Kokoszka PS, Politis DN (2011). “Nonlinearity of ARCH and stochastic volatility models and
Bartlett’s formula.” Probability and Mathematical Statistics, 31, 47–59.

See Also

whiteNoiseTest, acfIidTest

Examples

see also the examples for \code{\link{whiteNoiseTest}}
n <- 5000
x <- sarima:::rgarch1p1(n, alpha = 0.3, beta = 0.55, omega = 1, n.skip = 100)
x.acf <- autocorrelations(x)
x.pacf <- partialAutocorrelations(x)

acfGarchTest(x.acf, x = x, nlags = c(5,10,20))
acfGarchTest(x.pacf, x = x, nlags = c(5,10,20))

do not compute CI's:
acfGarchTest(x.pacf, x = x, nlags = c(5,10,20), interval = NULL)

plot methods call acfGarchTest() suitably if 'x' is given:
plot(x.acf, data = x)
plot(x.pacf, data = x)

use 90% limits:
plot(x.acf, data = x, interval = 0.90)

acfWnTest(x.acf, x = x, nlags = c(5,10,20))
nvarOfAcfKP(x, maxlag = 20)
whiteNoiseTest(x.acf, h0 = "arch-type", x = x, nlags = c(5,10,20))

acfIidTest Carry out IID tests using sample autocorrelations

Description

Carry out tests for IID from sample autocorrelations.

acfIidTest 7

Usage

acfIidTest(acf, n, npar = 0, nlags = npar + 1,
method = c("LiMcLeod", "LjungBox", "BoxPierce"),
interval = 0.95, expandCI = TRUE, ...)

Arguments

acf autocorrelations.

n length of the corresponding time series.

npar number of df to subtract.

nlags number of autocorrelations to use for the portmonteau statistic, can be a vector
to request several such statistics.

method a character string, one of "LiMcLeod", "LjungBox" or "BoxPierce".

interval a number or NULL.

expandCI logical flag, if TRUE return a CI for each lag up to max(nlags). Used only if
CI’s are requested.

... additional arguments passed on to methods. In particular, some methods have
argument x for the time series.

Details

Performs one of several tests for IID based on sample autocorrelations. A correction of the degrees
of freedom for residuals from fitted models can be specified with argument npar. nlags specifies
the number of autocorrelations to use in the test, it can be a vector to request several tests.

The results of the test are gathered in a matrix with one row for each element of nlags. The test
statistic is in column "ChiSQ", degrees of freedom in "DF" and the p-value in "pvalue". The method
is in attribute "method".

If interval is not NULL confidence intervals for the autocorrelations are computed, under the null
hypothesis of independence. The coverage probability (or probabilities) is speciified by interval.

If argument expandCI is TRUE, there is one row for each lag, up to max(nlags). It is best to use this
feature with a single coverage probability.

If expandCI to FALSE the confidence intervals are put in a matrix with one row for each coverage
probability.

Value

a list with components "test" and (if requested) "ci", as described in Details

Methods

signature(acf = "ANY") In this method acf contains the autocorrelations.

signature(acf = "missing") The autocorrelations are computed from argument x (the time se-
ries).

signature(acf = "SampleAutocorrelations") This is a convenience method in which argu-
ment n is taken from acf and thus does not need to be specified by the user.

8 acfMaTest

Author(s)

Georgi N. Boshnakov

References

Li WK (2004). Diagnostic checks in time series. Chapman & Hall/CRC Press.

See Also

whiteNoiseTest, acfGarchTest, acfMaTest

Examples

ts1 <- rnorm(100)

a1 <- drop(acf(ts1)$acf)
acfIidTest(a1, n = 100, nlags = c(5, 10, 20))
acfIidTest(a1, n = 100, nlags = c(5, 10, 20), method = "LjungBox")
acfIidTest(a1, n = 100, nlags = c(5, 10, 20), interval = NULL)
acfIidTest(a1, n = 100, method = "LjungBox", interval = c(0.95, 0.90), expandCI = FALSE)

acfIidTest() is called behind the scenes by methods for autocorrelation objects
ts1_acrf <- autocorrelations(ts1)
class(ts1_acrf) # "SampleAutocorrelations"
whiteNoiseTest(ts1_acrf, h0 = "iid", nlags = c(5,10,20), method = "LiMcLeod")
plot(ts1_acrf)

use 10% level of significance in the plot:
plot(ts1_acrf, interval = 0.9)

acfMaTest Autocorrelation test for MA(q)

Description

Carry out autocorrelation test for MA(q).

Usage

acfMaTest(acf, ma, n, nlags, interval = 0.95)

Arguments

acf autocorrelations.
ma a positive integer, the moving average order.
n length of the corresponding time series.
nlags number of autocorrelations to use for the portmonteau statistic, can be a vector

to request several such statistics.
interval a number or NULL.

armaccf_xe 9

Details

acfMaTest performs a test that the time series is MA(ma), under the classical assumptions of
Bartlett’s formulas.

When intervals are requested, they are confidence intervals for lags from 1 to ma. For lags greater
than the moving average order, ma, autocorrelations outside them suggest to reject the null hypoth-
esis that the process is MA(ma).

Value

a list with components "test" and (if requested) "ci"

Author(s)

Georgi N. Boshnakov

See Also

whiteNoiseTest, acfIidTest acfGarchTest

armaccf_xe Crosscovariances between an ARMA process and its innovations

Description

Compute autocovariances of ARMA models and crosscovariances between an ARMA process and
its innovations.

Usage

armaccf_xe(model, lag.max = 1)
armaacf(model, lag.max, compare)

Arguments

model the model, a list with components ar, ma and sigma2 (for the time being, sigmasq
is also accepted, if model$sigma2 is NULL).

lag.max maximal lag for the result.

compare if TRUE compute the autocovariances also using tacvfARMA() and return both
results for comparison.

10 armaccf_xe

Details

Given a causal ARMA model, armaccf_xe computes theoretical crosscovariances Rxe(0), Rxe(1),
Rxe(lag.max), where Rxe(k) = E(Xtet−k), between an ARMA process and its innovations.
Negative lags are not considered since Rxe(k) = 0 for k < 0. The moving average polynomial
may have roots on the unit circle.

This is a simple illustration of the equations I give in my time series courses.

armaacf computes ARMA autocovariances. The default method computes computes the zero lag
autocovariance using armaccf_xe() and multiplies the autocorrelations obtained from ARMAacf
(which computes autocorrelations, not autocovariances). If compare = TRUE it also uses tacvfARMA
from package ltsa and returns both results in a matrix for comparison. The matrix has columns
"native", "tacvfARMA" and "difference", where the last column contains the (zapped) differ-
ences between the autocorrelations obtained by the two methods.

The ARMA parameters in argument model follow the Brockwell-Davis convention for the signs.
Since tacvfARMA() uses the Box-Jenkins convention for the signs, the moving average parameters
are negated for calls to tacvfARMA().

Value

for armaccf_xe, the crosscovariances for lags 0, ..., maxlag.

for armaacf, the autocovariances, see Details.

Note

armaacf is useful for exploratory computations but autocovariances is more convenient and elim-
inates the need to know function names for particular cases.

Author(s)

Georgi N. Boshnakov

References

McLeod AI, Yu H, Krougly Z (2007). “Algorithms for Linear Time Series Analysis: With R Pack-
age.” Journal of Statistical Software, 23. https://www.jstatsoft.org/article/view/v023i05.

Examples

Example 1 from ?ltsa::tacvfARMA
z <- sqrt(sunspot.year)
n <- length(z)
p <- 9
q <- 0
ML <- 5
out <- arima(z, order = c(p, 0, q))

phi <- theta <- numeric(0)
if (p > 0) phi <- coef(out)[1:p]
if (q > 0) theta <- coef(out)[(p+1):(p+q)]
zm <- coef(out)[p+q+1]

https://www.jstatsoft.org/article/view/v023i05

ArmaModel 11

sigma2 <- out$sigma2

armaacf(list(ar = phi, ma = theta, sigma2 = sigma2), lag.max = 20)
this illustrates that the methods
based on ARMAacf and tacvARMA are equivalent:
armaacf(list(ar = phi, ma = theta, sigma2 = sigma2), lag.max = 20, compare = TRUE)

In the original example in ?ltsa::tacvfARMA
the comparison is with var(z), not with the theoretical variance:
rA <- ltsa::tacvfARMA(phi, - theta, maxLag=n+ML-1, sigma2=sigma2)
rB <- var(z) * ARMAacf(ar=phi, ma=theta, lag.max=n+ML-1)
so rA and rB are different.
but the difference is due to the variance:
rB2 <- rA[1] * ARMAacf(ar=phi, ma=theta, lag.max=n+ML-1)
cbind(rA[1:5], rB[1:5], rB2[1:5])

There is no need to use specific functions,
autocovariances() is most convenient for routine use:
armalist <- list(ar = phi, ma = theta, sigma2 = sigma2)
autocovariances(armalist, maxlag = 10)

even better, set up an ARMA model:
mo <- new("ArmaModel", ar = phi, ma = theta, sigma2 = sigma2)
autocovariances(mo, maxlag = 10)

ArmaModel Create ARMA objects

Description

Create ARMA objects.

Usage

ArmaModel(...)
ArModel(...)
MaModel(...)

Arguments

... the arguments a reassed to new(). Typical arguments are ar, ma and mean.

Value

an object representing an ARMA, AR or MA model

Author(s)

Georgi N. Boshnakov

12 ArmaModel

See Also

ArmaModel, ArModel, MaModel

Examples

MA
(ma2a1 <- MaModel(ma = c(0.3, 0.7), sigma2 = 1))
autocorrelations(ma2a1, maxlag = 6)
partialAutocorrelations(ma2a1, maxlag = 6)
autocovariances(ma2a1, maxlag = 6)
partialVariances(ma2a1, maxlag = 6)

sigma2 is set to NA if not specified
but things that don't depend on it are computed:
(ma2a2 <- MaModel(ma = c(0.3, 0.7)))
autocorrelations(ma2a2, maxlag = 6)
partialAutocorrelations(ma2a2, maxlag = 6)

AR
(ar2a1 <- ArModel(ar = c(-0.3, -0.7), sigma2 = 1))
autocorrelations(ar2a1, maxlag = 6)
partialAutocorrelations(ar2a1, maxlag = 6)
autocovariances(ar2a1, maxlag = 6)
partialVariances(ar2a1, maxlag = 6)

ARMA
(arma2a1 <- ArmaModel(ar = 0.5, ma = c(0.3, 0.7), sigma2 = 1))
autocorrelations(arma2a1, maxlag = 6)
partialAutocorrelations(arma2a1, maxlag = 6)

modelCoef() returns a list with components 'ar' and 'ma'
modelCoef(arma2a1)
modelCoef(ma2a1)
modelCoef(ar2a1)

modelOrder() returns a list with components 'ar' and 'ma'
modelOrder(arma2a1)
modelOrder(ma2a1)
modelOrder(ar2a1)

as(ma2a1, "ArmaModel") # success, as expected
as(ar2a1, "ArModel") # success, as expected
as(ArmaModel(ar = c(-0.3, -0.7)), "ArModel")
But these fail:
as(ma2a1, "ArModel") # fails
as(arma2a1, "ArModel") # fails
as(arma2a1, "MaModel") # fails

ArmaModel-class 13

ArmaModel-class Classes ArmaModel, ArModel and MaModel in package sarima

Description

Classes ArmaModel, ArModel and MaModel in package sarima.

Objects from the Class

Classes "ArModel" and "MaModel" are subclasses of "ArmaModel" with the corresponding order
always zero.

The recommended way to create objects from these classes is with the functions ArmaModel, ArModel
and MaModel. Objects can also be created by calls of the form new("ArmaModel",...,ar,ma,mean,check).
See also coerce-methods for further ways to create objects from these classes.

Slots

center: Object of class "numeric" ~~

intercept: Object of class "numeric" ~~

sigma2: Object of class "numeric" ~~

ar: Object of class "BJFilter" ~~

ma: Object of class "SPFilter" ~~

Extends

Class "ArmaSpec", directly. Class "VirtualArmaModel", directly. Class "ArmaFilter", by class
"ArmaSpec", distance 2. Class "VirtualFilterModel", by class "VirtualArmaModel", distance 2.
Class "VirtualStationaryModel", by class "VirtualArmaModel", distance 2. Class "VirtualArmaFilter",
by class "ArmaSpec", distance 3. Class "VirtualAutocovarianceModel", by class "VirtualAr-
maModel", distance 3. Class "VirtualMeanModel", by class "VirtualArmaModel", distance 3.
Class "VirtualMonicFilter", by class "ArmaSpec", distance 4.

Methods

modelOrder signature(object = "ArmaModel",convention = "ArFilter"): ...

modelOrder signature(object = "ArmaModel",convention = "MaFilter"): ...

modelOrder signature(object = "ArmaModel",convention = "missing"): ...

modelOrder signature(object = "SarimaModel",convention = "ArmaModel"): ...

sigmaSq signature(object = "ArmaModel"): ...

Author(s)

Georgi N. Boshnakov

14 arma_Q0Gardner

See Also

ArmaModel, ArModel, MaModel, coerce-methods

Examples

arma1p1 <- new("ArmaModel", ar = 0.5, ma = 0.9, sigma2 = 1)
autocovariances(arma1p1, maxlag = 10)
autocorrelations(arma1p1, maxlag = 10)
partialAutocorrelations(arma1p1, maxlag = 10)
partialAutocovariances(arma1p1, maxlag = 10)

new("ArmaModel", ar = 0.5, ma = 0.9, intercept = 4)
new("ArmaModel", ar = 0.5, ma = 0.9, center = 1.23)

new("ArModel", ar = 0.5, center = 1.23)
new("MaModel", ma = 0.9, center = 1.23)

argument 'mean' is an alias for 'center':
new("ArmaModel", ar = 0.5, ma = 0.9, mean = 1.23)

both center and intercept may be given
(the mean is not equal to the intercept in this case)
new("ArmaModel", ar = 0.5, ma = 0.9, center = 1.23, intercept = 2)

Don't use 'mean' together with 'center' and/or 'intercept'.
new("ArmaModel", ar = 0.5, ma = 0.9, center = 1.23, mean = 4)
new("ArmaModel", ar = 0.5, ma = 0.9, intercept = 2, mean = 4)
Both give error message:
Use argument 'mean' only when 'center' and 'intercept' are missing or zero

arma_Q0Gardner Computing the initial state covariance matrix of ARMA

Description

Wrappers for the internals ’stats’ functions used by arima() to compute the initial state covariance
matrix of ARMA models.

Usage

arma_Q0naive(phi, theta, tol = .Machine$double.eps)

arma_Q0gnbR(phi, theta, tol = .Machine$double.eps)

arma_Q0gnb 15

Arguments

phi autoregressive coefficients.

theta moving average coefficients.

tol tollerance.

Details

arima() uses one of two methods to compute the initial state covariance matrix of a stationary
ARMA model. Both methods are implemented by internal non-exported C functions. arma_Q0Gardner()
and arma_Q0bis are simple R wrappers for those functions. They are defined in the tests (TODO:
put in the examples?) bit are not defined in the namespace of the package since they use unexported
functions.

arma_Q0Gardner() implements the original method from Gardner et al (1980). arma_Q0bis() is
a more recent method that deals better with roots very close to the unit circle.

These functions can be useful for comparative testing. They cannot be put in package ’sarima’ since
they use `:::` operator and are hence inadmissible to CRAN.

Value

a matrix

References

Gardner G, Harvey AC, Phillips GDA (1980). “Algorithm AS154. An algorithm for exact maximum
likelihood estimation of autoregressive-moving average models by means of Kalman filtering.” Ap-
plied Statistics, 311–322.

Examples

arma_Q0Gardner(phi, theta, tol = .Machine$double.eps)
arma_Q0bis(phi, theta, tol = .Machine$double.eps)

arma_Q0gnb Compute the initial state covariance of ARMA model

Description

Compute the initial state covariance of ARMA model

Usage

arma_Q0gnb(phi, theta, tol = 2.220446e-16)

16 arma_Q0gnb

Arguments

phi autoregression parameters.

theta moving average parameters.

tol tollerance. (TODO: explain)

Details

Experimental computation of the initial state covariance matrix of ARMA models.

The numerical results are comparable to SSinit = "Rossignol2011" method in arima and related
functions. The method seems about twice faster than "Rossignol2011" on the models I tried but I
haven’t done systematic tests.

See section ‘examples’ below and, for more tests based on the tests from stats, the tests in test/testthat/test-
arma-q0.R.

Value

a matrix

Author(s)

Georgi N. Boshnakov

References

Gardner G, Harvey AC, Phillips GDA (1980). “Algorithm AS154. An algorithm for exact maximum
likelihood estimation of autoregressive-moving average models by means of Kalman filtering.” Ap-
plied Statistics, 311–322.

R bug report PR#14682 (2011-2013) <URL: https://bugs.r-project.org/bugzilla3/show_bug.cgi?id=14682>.

See Also

makeARIMA, arima

Examples

Q0a <- arma_Q0gnb(c(0.2, 0.5), c(0.3))
Q0b <- makeARIMA(c(0.2, 0.5), c(0.3), Delta = numeric(0))$Pn
all.equal(Q0a, Q0b) ## TRUE

see test/testthat/test-arma-q0.R for more;
these functions cannot be defined in the package due to their use of
\code{:::} on exported base R functions.
##
"Gardner1980"
arma_Q0Gardner <- function(phi, theta, tol = .Machine$double.eps){

tol is not used here
.Call(stats:::C_getQ0, phi, theta)

}
"Rossignol2011"

autocorrelations 17

arma_Q0bis <- function(phi, theta, tol = .Machine$double.eps){
.Call(stats:::C_getQ0bis, phi, theta, tol)

}

arma_Q0Gardner(c(0.2, 0.5), c(0.3))
arma_Q0bis(c(0.2, 0.5), c(0.3))
Q0a
Q0b

autocorrelations Compute autocorrelations and related quantities

Description

Generic functions for computation of autocorrelations, autocovariances and related quantities. The
idea is to free the user from the need to look for specific functions that compute the desired property
for their object.

Usage

autocovariances(x, maxlag, ...)

autocorrelations(x, maxlag, lag_0, ...)

partialAutocorrelations(x, maxlag, lag_0 = TRUE, ...)

partialAutocovariances(x, maxlag, ...)

partialVariances(x, ...)

Arguments

x an object for which the requested property makes sense.

maxlag the maximal lag to include in the result.

lag_0 if TRUE include lag zero.

... further arguments for methods.

Details

autocorrelations is a generic function for computation of autocorrelations. It deduces the ap-
propriate type of autocorrelation from the class of the object. For example, for models it computes
theoretical autocorrelations, while for time series it computes sample autocorrelations.

The other functions described are similar for other second order properties of x.

These functions return objects from suitable classes, all inheriting from "Lagged". The latter means
that indexing starts from zero, so the value for lag zero is accessed by r[0]). Subscripting always
returns the underlying data unclassed (i.e. ordinary vectors or arrays). In particular, "[]" extracts
the underlying data.

18 autocorrelations

Functions computing autocorrelations and partial autocorrelations have argument lag_0 — if it is
set to FALSE, the value for lag zero is dropped from the result and the returned object is an ordinary
vector or array, as appropriate.

See the individual methods for the format of the result and further details.

Value

an object from a class suitable for the requested property and x

Author(s)

Georgi N. Boshnakov

See Also

armaccf_xe, armaacf

Examples

v1 <- rnorm(100)
autocorrelations(v1)
v1.acf <- autocorrelations(v1, maxlag = 10)

v1.acf[1:10] # drop lag zero value (and the class)
autocorrelations(v1, maxlag = 10, lag_0 = FALSE) # same

partialAutocorrelations(v1)
partialAutocorrelations(v1, maxlag = 10)

compute 2nd order properties from raw data
autocovariances(v1)
autocovariances(v1, maxlag = 10)
partialAutocovariances(v1, maxlag = 6)
partialAutocovariances(v1)
partialVariances(v1, maxlag = 6)
pv1 <- partialVariances(v1)

compute 2nd order properties from raw data
autocovariances(AirPassengers, maxlag = 6)
autocorrelations(AirPassengers, maxlag = 6)
partialAutocorrelations(AirPassengers, maxlag = 6)
partialAutocovariances(AirPassengers, maxlag = 6)
partialVariances(AirPassengers, maxlag = 6)

acv <- autocovariances(AirPassengers, maxlag = 6)
autocovariances(acv) # no-op
autocovariances(acv, maxlag = 4) # trim the available lags

compute 2nd order properties from sample autocovariances
acr <- autocorrelations(acv)
acr
partialAutocorrelations(acv)

autocorrelations-methods 19

partialAutocovariances(acv)
partialVariances(acv)

compute 2nd order properties from sample autocorrelations
acr
partialAutocorrelations(acr)

These cannot be computed, since the variance is needed but unknown:
autocovariances(acr)
partialAutocovariances(acr)
partialVariances(acr)

to treat autocorrelations as autocovariances,
convert them to autocovariances explicitly:
as(acr, "Autocovariances")
as(acr, "SampleAutocovariances")

partialVariances(as(acr, "Autocovariances"))
partialVariances(as(acr, "SampleAutocovariances"))

autocorrelations-methods

Methods for function autocorrelations()

Description

Methods for function autocorrelations().

Methods

signature(x = "ANY", maxlag = "ANY", lag_0 = "ANY")

signature(x = "ANY", maxlag = "ANY", lag_0 = "missing")

signature(x = "Autocorrelations", maxlag = "ANY", lag_0 = "missing")

signature(x = "Autocorrelations", maxlag = "missing", lag_0 = "missing")

signature(x = "Autocovariances", maxlag = "ANY", lag_0 = "missing")

signature(x = "PartialAutocorrelations", maxlag = "ANY", lag_0 = "missing")

signature(x = "PartialAutocovariances", maxlag = "ANY", lag_0 = "missing")

signature(x = "SamplePartialAutocorrelations", maxlag = "ANY", lag_0 = "missing")

signature(x = "SamplePartialAutocovariances", maxlag = "ANY", lag_0 = "missing")

signature(x = "VirtualArmaModel", maxlag = "ANY", lag_0 = "missing")

signature(x = "VirtualSarimaModel", maxlag = "ANY", lag_0 = "missing")

Author(s)

Georgi N. Boshnakov

20 coerce-methods

Examples

see the examples for ?autocorrelations

autocovariances-methods

Methods for function autocovariances()

Description

Methods for function autocovariances().

Methods

signature(x = "ANY", maxlag = "ANY")

signature(x = "Autocovariances", maxlag = "ANY")

signature(x = "Autocovariances", maxlag = "missing")

signature(x = "VirtualArmaModel", maxlag = "ANY")

signature(x = "VirtualAutocovariances", maxlag = "ANY")

Author(s)

Georgi N. Boshnakov

See Also

autocorrelations

Examples

see the examples for ?autocorrelations

coerce-methods setAs methods in package sarima

Description

Methods for as() in package sarima.

coerce-methods 21

Methods

This section shows the methods for converting objects from one class to another, defined via
setAs(). Use as(obj,"classname") to convert object obj to class "classname".

signature(from = "ANY", to = "Autocorrelations")

signature(from = "ANY", to = "ComboAutocorrelations")

signature(from = "ANY", to = "ComboAutocovariances")

signature(from = "ANY", to = "PartialAutocorrelations")

signature(from = "ANY", to = "PartialAutocovariances")

signature(from = "ANY", to = "PartialVariances")

signature(from = "ArmaSpec", to = "list")

signature(from = "Autocorrelations", to = "ComboAutocorrelations")

signature(from = "Autocorrelations", to = "ComboAutocovariances")

signature(from = "Autocovariances", to = "ComboAutocorrelations")

signature(from = "Autocovariances", to = "ComboAutocovariances")

signature(from = "BJFilter", to = "SPFilter")

signature(from = "numeric", to = "BJFilter") Convert a numeric vector to a BJFilter object.
This is a way to state that the coefficients follow the Box-Jenkins convention for the signs, see
the examples.

signature(from = "numeric", to = "SPFilter") Convert a numeric vector to an SPFilter ob-
ject. This is a way to state that the coefficients follow the signal processing (SP) convention
for the signs, see the examples.

signature(from = "PartialVariances", to = "Autocorrelations")

signature(from = "PartialVariances", to = "Autocovariances")

signature(from = "PartialVariances", to = "ComboAutocorrelations")

signature(from = "PartialVariances", to = "ComboAutocovariances")

signature(from = "SarimaFilter", to = "ArmaFilter")

signature(from = "SarimaModel", to = "list")

signature(from = "SPFilter", to = "BJFilter")

signature(from = "vector", to = "Autocorrelations")

signature(from = "vector", to = "Autocovariances")

signature(from = "vector", to = "PartialAutocorrelations")

signature(from = "vector", to = "PartialAutocovariances")

signature(from = "VirtualArmaFilter", to = "list")

signature(from = "VirtualSarimaModel", to = "ArmaModel")

Author(s)

Georgi N. Boshnakov

22 filterCoef

Examples

the default for ARMA model is BJ for ar and SP for ma:
mo <- new("ArmaModel", ar = 0.9, ma = 0.4, sigma2 = 1)
modelPoly(mo)

here we declare explicitly that 0.4 uses the SP convention
(not necessary, the result is the same, but the intention is clear).
mo1 <- new("ArmaModel", ar = 0.9, ma = as(0.4, "SPFilter"), sigma2 = 1)
modelPoly(mo1)
identical(mo, mo1) ## TRUE

if the sign of theta follows the BJ convention, this can be stated unambiguously.
This creates the same model:
mo2 <- new("ArmaModel", ar = 0.9, ma = as(-0.4, "BJFilter"), sigma2 = 1)
modelPoly(mo2)
identical(mo, mo2) ## TRUE

And this gives the intended model whatever the default conventions:
ar3 <- as(0.9, "BJFilter")
ma3 <- as(-0.4, "BJFilter")
mo3 <- new("ArmaModel", ar = ar3, ma = ma3, sigma2 = 1)
modelPoly(mo3)
identical(mo, mo3) ## TRUE

The coefficients can be extracted in any particular form,
e.g. to pass them to functions with specific requirements:
modelCoef(mo3) # coefficients of the model with the default (BD) sign convention
modelCoef(mo3, convention = "BD") # same result
modelCoef(mo3, convention = "SP") # signal processing convention

for ltsa::tacvfARMA() the convention is BJ, so:
co <- modelCoef(mo3, convention = "BJ") # Box-Jenkins convention

ltsa::tacvfARMA(coar, coma, maxLag = 6, sigma2 = 1)
autocovariances(mo3, maxlag = 6) ## same

filterCoef Coefficients and other basic properties of filters

Description

Coefficients and other basic properties of filters.

Usage

filterCoef(object, convention, ...)

filterCoef 23

filterOrder(object, ...)

filterPoly(object, ...)

filterPolyCoef(object, lag_0 = TRUE, ...)

Arguments

object object.

convention convention for the sign.

lag_0 if FALSE, drop the coefficient of order zero.

... further arguments for methods.

Details

Generic functions to extract basic properties of filters: filterCoef returns coefficients, filterOrder
returns the order, filterPoly, returns the characteristic polynomial, filterPolyCoef gives the
coefficients of the characteristic polynomial.

For further details on argument convention see filterCoef-methods.

What exactly is returned depends on the specific filter classes, see the description of the correspond-
ing methods. For the core filters, the values are as can be expected. For "ArmaFilter", the value is a
list with components "ar" and "ma" giving the requested property for the corresponding part of the
filter. Similarly, for "SarimaFilter" the values are lists, maybe with additional quantities.

Value

the requested property as described in Details.

Note

The filterXXX() functions are somewhat low level and technical. They should be rarely needed
in routine work. The corresponding modelXXX are more flexible.

Author(s)

Georgi N. Boshnakov

See Also

modelOrder, modelCoef, modelPoly, modelPolyCoef, for the recommended higher level alterna-
tives for models.

filterOrder-methods, filterCoef-methods, filterPoly-methods, filterPolyCoef-methods,
for more information on the methods and the arguments.

24 filterCoef-methods

Examples

filterPoly(as(c(0.3, 0.5), "BJFilter")) # 1 - 0.3*x - 0.5*x^2
filterPoly(as(c(0.3, 0.5), "SPFilter")) # 1 + 0.3*x + 0.5*x^2

now two representations of the same filter:
fi1 <- as(c(0.3, 0.5), "BJFilter")
fi2 <- as(c(-0.3, -0.5), "SPFilter")
identical(fi2, fi1) # FALSE, but
fi1 and fi2 represent the same filter, eg. same ch. polynomials:
filterPoly(fi1)
filterPoly(fi2)
identical(filterPolyCoef(fi2), filterPolyCoef(fi1))

same as above, using new()
fi1a <- new("BJFilter", coef = c(0.3, 0.5))
identical(fi1a, fi1) # TRUE

fi2a <- new("SPFilter", coef = c(-0.3, -0.5))
identical(fi2a, fi2) # TRUE

conversion by as() changes the internal representation
but represents the same filter:
identical(as(fi1, "SPFilter"), fi2) # TRUE

c(filterOrder(fi1), filterOrder(fi2))

these give the internally stored coefficients:
filterCoef(fi1)
filterCoef(fi2)

with argument 'convention' the result doesn't depend
on the internal representation:
co1 <- filterCoef(fi1, convention = "SP")
co2 <- filterCoef(fi2, convention = "SP")
identical(co1, co2) # TRUE

filterCoef-methods Methods for filterCoef()

Description

Methods for filterCoef in package sarima.

Methods

filterCoef() returns the coefficients of object. The format of the result depends on the type of
filter, see the descriptions of the individual methods below.

If argument convention is omitted, the sign convention for the coefficients is the one used in the
object. convention can be set to "BJ" or "SP" to request, respectively, the Box-Jenkins or the signal
processing convention. Also, "-" is equivalent to "BJ" and "+" to "SP".

filterCoef-methods 25

For ARMA filters, "BJ" and "SP" request the corresponding convention for both parts (AR and
MA). A widely used convention, e.g., by base R and (Brockwell and Davis 1991), is "BJ" for the
AR part and "SP" for the MA part. It can be requested with convention = "BD". For convenience,
"–" is equivalent to "BJ", "++" to "SP", "-+" to "BD". For completeness, "+-" can be used to request
"SP" for the AR part and "BJ" for the MA part.

Invalid values of convention throw error. In particular, low level filters, such as "BJFilter" don’t
know if they are AR or MA, so they throw error if convention is "BD" or "+-" (but "++" and "–"
are ok, since they are unambiguous). Similarly and to avoid subtle errors, the ARMA filters do not
accept "+" or "-".

signature(object = "VirtualMonicFilterSpec", convention = "missing") returns object@coef.

signature(object = "VirtualBJFilter", convention = "character") returns the filter coef-
ficients in the requested convention.

signature(object = "VirtualSPFilter", convention = "character") returns the filter coef-
ficients in the requested convention.

signature(object = "BJFilter", convention = "character") returns the filter coefficients in
the requested convention.

signature(object = "SPFilter", convention = "character") returns the filter coefficients in
the requested convention.

signature(object = "VirtualArmaFilter", convention = "missing")

signature(object = "VirtualArmaFilter", convention = "character") Conceptually, calls
filterCoef(), with one argument, on the AR and MA parts of the model. If convention
is present, converts the result to the specified convention. Returns a list with the following
components:

ar AR coefficients.
ma MA coefficients.

signature(object = "SarimaFilter", convention = "missing")

signature(object = "SarimaFilter", convention = "character") If convention is present,
converts the coefficients to the specified convention. AR-like coefficients get the convention
for the AR part, Ma-like coefficients get the convention for the MA part. Returns a list with
the following components:

nseasons number of seasons.
iorder integration order, number of (non-seasonal) differences.
siorder seasonal integration order, number of seasonal differences.
ar ar coefficients.
ma ma coefficients.
sar seasonal ar coefficients.
sma seasonal ma coefficients.

Author(s)

Georgi N. Boshnakov

26 filterOrder-methods

References

Brockwell PJ, Davis RA (1991). Time series: theory and methods. 2nd ed.. Springer Series in
Statistics. Berlin etc.: Springer-Verlag..

See Also

filterCoef for examples and related functions

Examples

see the examples for ?filterCoef

filterOrder-methods Methods for function filterOrder in package sarima

Description

Methods for function filterOrder in package sarima.

Methods

The following methods ensure that all filters in package sarima have a method for filterOrder.

signature(object = "VirtualMonicFilterSpec") Returns object@order.
signature(object = "SarimaFilter") Returns a list with the following components:

nseasons number of seasons.
iorder integration order, number of (non-seasonal) differences.
siorder seasonal integration order, number of seasonal differences.
ar autoregression order
ma moving average order
sar seasonal autoregression order
sma seasonal moving average order

signature(object = "VirtualArmaFilter") Returns a list with the following components:
ar autoregression order.
ma moving average order.

Author(s)

Georgi N. Boshnakov

See Also

filterCoef for examples and related functions

Examples

see the examples for ?filterCoef

filterPoly-methods 27

filterPoly-methods Methods for filterPoly in package sarima

Description

Methods for filterPoly in package sarima.

Methods

The methods for filterPoly take care implicitly for the sign convention used to store the coeffi-
cients in the object.

signature(object = "BJFilter") A polynomial whose coefficients are the negated filter coeffi-
cients.

signature(object = "SPFilter") A polynomial whose coefficients are as stored in the object.
signature(object = "SarimaFilter") Returns a list with the following components:

nseasons number of seasons.
iorder integration order, number of (non-seasonal) differences.
siorder seasonal integration order, number of seasonal differences.
arpoly autoregression polynomial
mapoly moving average polynomial
sarpoly seasonal autoregression polynomial
smapoly seasonal moving average polynomial
fullarpoly the polynomial obtained by multiplying out all AR-like terms, including differ-

ences.
fullmapoly the polynomial obtained by multiplying out all MA terms
core_sarpoly core seasonal autoregression polynomial. It is such that sarpoly(z) = core_sarpoly(znseasons)
core_smapoly core seasonal moving average polynomial. It is such that smapoly(z) = core_smapoly(znseasons)

signature(object = "VirtualArmaFilter") Returns a list with the following components:
ar autoregression polynomial.
ma moving average polynomial.

signature(object = "VirtualMonicFilterSpec") Calls filterPolyCoef(object) and con-
verts the result to a polynomial. Thus, it is sufficient to have a method for filterPolyCoef().

Author(s)

Georgi N. Boshnakov

See Also

filterCoef for examples and related functions

Examples

see the examples for ?filterCoef

28 filterPolyCoef-methods

filterPolyCoef-methods

Methods for filterPolyCoef

Description

Methods for filterPolyCoef in package sarima.

Methods

The filterPolyCoef methods return results with the same structure as the corresponding methods
for filterPoly but with polynomials replaced by their coefficients. If lag_0 is FALSE the order 0
coefficients are dropped.

signature(object = "VirtualBJFilter") Calls filterCoef(object), negates the result and
prepends 1 if lag_0 is TRUE.

signature(object = "VirtualSPFilter") Calls filterCoef(object) and prepends 1 to the
result if lag_0 is TRUE.

signature(object = "VirtualArmaFilter") Returns a list with the following components:

ar coefficients of the autoregression polynomial.
ma coefficients of the moving average polynomial.

signature(object = "BJFilter") The coefficients of a polynomial whose coefficients are the
negated filter coefficients. This is equivalent to the method for "VirtualBJFilter" but somewhat
more efficient.

signature(object = "SPFilter") The coefficients of a polynomial whose coefficients are as
stored in the object. This is equivalent to the method for "VirtualSPFilter" but somewhat
more efficient.

signature(object = "SarimaFilter") Returns a list with the same components as the "Sari-
maFilter" method for filterPoly, where the polynomials are replaced by their coefficients.

Author(s)

Georgi N. Boshnakov

See Also

filterCoef for examples and related functions

Examples

see the examples for ?filterCoef

fun.forecast 29

fun.forecast Forecasting functions for seasonal ARIMA models

Description

Forecasting functions for seasonal ARIMA models.

Usage

fun.forecast(past, n = max(2 * length(past), 12), eps = numeric(n), pasteps, ...)

Arguments

past past values of the time series, by default zeroes.

n number of forecasts to compute.

eps values of the white noise sequence (for simulation of future). Currently not
used!

pasteps past values of the white noise sequence for models with MA terms, 0 by default.

... specification of the model, passed to new() to create a "SarimaModel" object,
see Details.

Details

fun.forecast computes predictions from a SARIMA model. The model is specified using the
". . . " arguments which are passed to new("SarimaModel",...), see the description of class "SarimaModel"
for details.

Argument past, if provided, should contain a least as many values as needed for the prediction
equation. It is harmless to provide more values than necessary, even a whole time series.

fun.forecast can be used to illustrate, for example, the inherent difference for prediction of inte-
grated and seasonally integrated models to corresponding models with roots close to the unit circle.

Value

the forecasts as an object of class "ts"

Author(s)

Georgi N. Boshnakov

Examples

f1 <- fun.forecast(past = 1, n = 100, ar = c(0.85), center = 5)
plot(f1)

f2 <- fun.forecast(past = 8, n = 100, ar = c(0.85), center = 5)
plot(f2)

30 fun.forecast

f3 <- fun.forecast(past = 10, n = 100, ar = c(-0.85), center = 5)
plot(f3)

frw1 <- fun.forecast(past = 1, n = 100, iorder = 1)
plot(frw1)

frw2 <- fun.forecast(past = 3, n = 100, iorder = 1)
plot(frw2)

frwa1 <- fun.forecast(past = c(1, 2), n = 100, ar = c(0.85), iorder = 1)
plot(frwa1)

fi2a <- fun.forecast(past = c(3, 1), n = 100, iorder = 2)
plot(fi2a)

fi2b <- fun.forecast(past = c(1, 3), n = 100, iorder = 2)
plot(fi2b)

fari1p2 <- fun.forecast(past = c(0, 1, 3), ar = c(0.9), n = 20, iorder = 2)
plot(fari1p2)

fsi1 <- fun.forecast(past = rnorm(4), n = 100, siorder = 1, nseasons = 4)
plot(fsi1)

fexa <- fun.forecast(past = rnorm(5), n = 100, ar = c(0.85), siorder = 1,
nseasons = 4)

plot(fexa)

fi2a <- fun.forecast(past = rnorm(24, sd = 5), n = 120, siorder = 2,
nseasons = 12)

plot(fi2a)

fi1si1a <- fun.forecast(past = rnorm(24, sd = 5), n = 120, iorder = 1,
siorder = 1, nseasons = 12)

plot(fi1si1a)

fi1si1a <- fun.forecast(past = AirPassengers[120:144], n = 120, iorder = 1,
siorder = 1, nseasons = 12)

plot(fi1si1a)

m1 <- list(iorder = 1, siorder = 1, ma = 0.8, nseasons = 12, sigma2 = 1)
m1
x <- sim_sarima(model = m1, n = 500)
acf(diff(diff(x), lag = 12), lag.max = 96)
pacf(diff(diff(x), lag = 12), lag.max = 96)

m2 <- list(iorder = 1, siorder = 1, ma = 0.8, sma = 0.5, nseasons = 12,
sigma2 = 1)

m2
x2 <- sim_sarima(model = m2, n = 500)
acf(diff(diff(x2), lag = 12), lag.max = 96)

InterceptSpec-class 31

pacf(diff(diff(x2), lag = 12), lag.max = 96)
fit2 <- arima(x2, order = c(0, 1, 1),

seasonal = list(order = c(0, 1, 0), nseasons = 12))
fit2
tsdiag(fit2)
tsdiag(fit2, gof.lag = 96)

x2past <- rnorm(13, sd = 10)
x2 <- sim_sarima(model = m2, n = 500, x = list(init = x2past))
plot(x2)

fun.forecast(ar = 0.5, n = 100)
fun.forecast(ar = 0.5, n = 100, past = 1)
fun.forecast(ma = 0.5, n = 100, past = 1)
fun.forecast(iorder = 1, ma = 0.5, n = 100, past = 1)
fun.forecast(iorder = 1, ma = 0.5, ar = 0.8, n = 100, past = 1)

fun.forecast(m1, n = 100)
fun.forecast(m2, n = 100)
fun.forecast(iorder = 1, ar = 0.8, ma = 0.5, n = 100, past = 1)

InterceptSpec-class Class InterceptSpec

Description

A helper class from which a number of models inherit intercept, centering and innovations variance.

Objects from the Class

Objects can be created by calls of the form new("InterceptSpec",...).

Slots

center: Object of class "numeric", centering parameter, defaults to zero.

intercept: Object of class "numeric", intercept parameter, defaults to zero.

sigma2: Object of class "numeric", innovations variance, defaults to NA.

Methods

sigmaSq signature(object = "InterceptSpec"): ...

Author(s)

Georgi N. Boshnakov

See Also

ArmaModel, SarimaModel

32 isStationaryModel

Examples

showClass("InterceptSpec")

isStationaryModel Check if a model is stationary

Description

Check if a model is stationary.

Usage

isStationaryModel(object)

Arguments

object an object

Details

This is a generic function. It returns TRUE if object represents a stationary model and FALSE
otherwise.

Value

TRUE or FALSE

Methods

signature(object = "SarimaSpec")

signature(object = "VirtualIntegratedModel")

signature(object = "VirtualStationaryModel")

Author(s)

Georgi N. Boshnakov

See Also

nUnitRoots

modelCenter 33

modelCenter model center

Description

model center

Usage

modelCenter(object)

Arguments

object an object

Methods

signature(object = "InterceptSpec")

Author(s)

Georgi N. Boshnakov

modelCoef Get the coefficients of models

Description

Get the coefficients of an object, optionally specifying the expected format.

Usage

modelCoef(object, convention, component, ...)

Arguments

object an object.

convention the convention to use for the return value, a character string or any object from
a supported class, see Details.

component if not missing, specifies a component to extract, see Details.

... not used, further arguments for methods.

34 modelCoef

Details

modelCoef is a generic function for extraction of coefficients of model objects. What ‘coeff-
cients’ means depends on the class of object but it can be changed with the optional argument
convention. In effect, modelCoef provides a very flexible and descriptive way of extracting coef-
ficients from models in various forms.

The one-argument form, modelCoef(object), gives the coefficients of object. In effect it defines,
for the purposes of modelCoef, the meaning of ‘coefficients’ for class class(modelCoef).

Argument convention can be used to specify what kind of value to return.

If convention is not a character string, only its class is used. Conceptually, the value will have
the format and meaning of the value that would be returned by a call to modelCoef(obj) with obj
from class class(convention).

If convention is a character string, it is typically the name of a class. In this case modelCoef(object,"someclass")
is equivalent to modelCoef(object,new("someclass")). Note that this is conceptual - argument
convention can be the name of a virtual class, for example. Also, for some classes of object
character values other than names of classes may be supported.

For example, if obj is from class "ArmaModel", modelCoef(obj) returns a list with components
"ar" and "ma", which follow the "BD" convention. So, to get such a list of coefficients from an
object from any class capable of representing ARMA models, set convention = "ArmaModel" in
the call to modelCoef{}.

modelCoef() will signal an error if object is not compatible with target (e.g. if it contains unit
roots). (see filterCoef if you need to expand any multiplicative filters). TODO: rethink this, it
does not reflect current behaviour!

If there is no class which returns exactly what is needed some additional computation may be nec-
essary. In the above "ArmaModel" example we might need the coefficients in the "BJ" convention,
so we would need to change the signs of the MA coefficients to achieve this. Since this is a very
common operation, a convenience feature is available. Setting convention = "BJ" requests ARMA
coefficients with "BJ" convention. For completeness, the the settings "SP" (signal processing) and
"BD" (Brockwell-Davis) are also available.

The methods for modelCoef() in package "sarima" return a list with components depending on
argument "convention", as outlined above.

Value

a list, with components depending on the target class, as described in Details

Author(s)

Georgi N. Boshnakov

See Also

modelOrder, modelPoly, modelPolyCoef

modelCoef-methods 35

Examples

define a seasonal ARIMA model, it has a number of components
m1 <- new("SarimaModel", iorder = 1, siorder = 1, ma = -0.3, sma = -0.1, nseasons = 12)
m1
Get the coefficients corresponding to a 'flat' ARMA model,
obtained by multiplying out AR-like and MA-like terms.
A simple way is to use modelCoef() with a suitable convention:
modelCoef(m1, "ArmaModel")
modelCoef(m1, "ArmaFilter") ## same

Here is another model
m1a <- new("SarimaModel", iorder = 1, siorder = 1, ar = 0.6, nseasons = 12)
modelCoef(m1a, "ArmaModel")
modelCoef(m1a, "ArmaFilter") ## same

if only AR-like terms are allowed in a computation,
use convention = "ArModel" to state it explicitly.
##
this works, since m1a contains only AR-like terms:
modelCoef(m1a, "ArModel")
modelCoef(m1a, "ArFilter") ## same
... but these would throw errors if evaluated,
since model m1a contains both AR-like and MA-like terms,
Not run:
modelCoef(m1, "ArModel")
modelCoef(m1, "ArFilter")
modelCoef(m1, "MaModel")
modelCoef(m1, "MaFilter")

End(Not run)

modelCoef-methods Methods for generic function modelCoef

Description

Methods for generic function modelCoef.

Methods

signature(object = "Autocorrelations", convention = "ComboAutocorrelations", component = "missing")

signature(object = "Autocorrelations", convention = "PartialAutocorrelations", component = "missing")

signature(object = "Autocovariances", convention = "Autocorrelations", component = "missing")

signature(object = "Autocovariances", convention = "ComboAutocorrelations", component = "missing")

36 modelCoef-methods

signature(object = "Autocovariances", convention = "ComboAutocovariances", component = "missing")

signature(object = "Autocovariances", convention = "PartialAutocorrelations", component = "missing")

signature(object = "ComboAutocorrelations", convention = "Autocorrelations", component = "missing")

signature(object = "ComboAutocorrelations", convention = "PartialAutocorrelations", component = "missing")

signature(object = "ComboAutocovariances", convention = "Autocovariances", component = "missing")

signature(object = "ComboAutocovariances", convention = "PartialAutocovariances", component = "missing")

signature(object = "ComboAutocovariances", convention = "PartialVariances", component = "missing")

signature(object = "ComboAutocovariances", convention = "VirtualAutocovariances", component = "missing")

signature(object = "PartialAutocorrelations", convention = "Autocorrelations", component = "missing")

signature(object = "SarimaModel", convention = "ArFilter", component = "missing")

signature(object = "SarimaModel", convention = "ArmaFilter", component = "missing")

signature(object = "SarimaModel", convention = "MaFilter", component = "missing")

signature(object = "SarimaModel", convention = "SarimaFilter", component = "missing")

signature(object = "VirtualAutocovariances", convention = "character", component = "missing")

signature(object = "VirtualAutocovariances", convention = "missing", component = "missing")

signature(object = "VirtualAutocovariances", convention = "VirtualAutocovariances", component = "missing")

signature(object = "SarimaModel", convention = "ArModel", component = "missing")

signature(object = "SarimaModel", convention = "MaModel", component = "missing")

signature(object = "VirtualFilterModel", convention = "BD", component = "missing")

signature(object = "VirtualFilterModel", convention = "BJ", component = "missing")

signature(object = "VirtualFilterModel", convention = "character", component = "missing")

signature(object = "VirtualFilterModel", convention = "missing", component = "missing")

signature(object = "VirtualFilterModel", convention = "SP", component = "missing")

signature(object = "ArmaModel", convention = "ArmaFilter", component = "missing")

signature(object = "VirtualAutocovariances", convention = "Autocovariances", component = "missing")

modelIntercept 37

Author(s)

Georgi N. Boshnakov

modelIntercept Give the intercept parameter of a model

Description

Give the intercept parameter of a model.

Usage

modelIntercept(object)

Arguments

object an object from a class for which intercept is defined.

Methods

signature(object = "InterceptSpec")

Author(s)

Georgi N. Boshnakov

modelOrder Get the model order and other properties of models

Description

Get the model order and other properties of models.

Usage

modelOrder(object, convention, ...)

modelPoly(object, convention, ...)

modelPolyCoef(object, convention, lag_0 = TRUE, ...)

Arguments

object a model object.
convention convention.
lag_0 if TRUE include lag_0 coef, otherwise drop it.
... further arguments for methods.

38 modelOrder

Details

These functions return the requested quantity, optionally requesting the returned value to follow a
specific convention, see also modelCoef.

When called with one argument, these functions return corresponding property in the native format
for the object’s class.

Argument convention requests the result in some other format. The mental model is that the
returned value is as if the object was first converted to the class specified by convention and then
the property extracted or computed. Normally, the object is not actually converted to that class. one
obvious reason is efficiency but it may also not be possible, for example if argument convention
is the name of a virtual class.

For example, the order of a seasonal SARIMA model is specified by several numbers. The call
modelOrder(object) returns it as a list with components ar, ma, sar, sma, iorder, siorder and
nseasons. For some computations all that is needed are the overall AR and MA orders obtained by
multiplying out the AR-like and MA-like terms in the model. The result would be an ARMA filter
and could be requested by modelOrder(object,"ArmaFilter").

The above operation is valid for any ARIMA model, so will always succeed. On the other hand,
if further computation would work only if there are no moving average terms in the model one
could use modelOrder(object,"ArFilter"). Here, if object contains MA terms an error will be
raised.

The concept is powerful and helps in writing expressive code. In this example a simple check on
the returned value would do but even so, such a check may require additional care.

Author(s)

Georgi N. Boshnakov

See Also

modelCoef

Examples

m1 <- new("SarimaModel", iorder = 1, siorder = 1, ma = -0.3, sma = -0.1, nseasons = 12)
modelOrder(m1)
modelOrder(m1, "ArmaFilter")
modelOrder(m1, new("ArmaFilter"))

modelPoly(m1, "ArmaModel")
modelPolyCoef(m1, "ArmaModel")

modelOrder-methods 39

modelOrder-methods Get the order of a model

Description

Get the order of a model.

Methods

signature(object = "ArmaModel", convention = "ArFilter")

signature(object = "ArmaModel", convention = "MaFilter")

signature(object = "SarimaModel", convention = "ArFilter")

signature(object = "SarimaModel", convention = "ArmaFilter")

signature(object = "SarimaModel", convention = "ArmaModel")

signature(object = "SarimaModel", convention = "ArModel")

signature(object = "SarimaModel", convention = "MaFilter")

signature(object = "SarimaModel", convention = "MaModel")

signature(object = "VirtualFilterModel", convention = "missing")

signature(object = "VirtualFilterModel", convention = "character")

Author(s)

Georgi N. Boshnakov

modelPoly-methods Get polynomials associated with SARIMA models

Description

Get polynomials associated with SARIMA models.

Methods

signature(object = "SarimaModel", convention = "ArmaFilter")

signature(object = "VirtualMonicFilter", convention = "missing")

signature(object = "VirtualFilterModel", convention = "character")

Author(s)

Georgi N. Boshnakov

40 nSeasons

modelPolyCoef-methods Methods for modelPolyCoef

Description

Methods for modelPolyCoef, e generic function for getting the coefficients of polynomials associ-
ated with SARIMA models.

Methods

signature(object = "SarimaModel", convention = "ArmaFilter")

signature(object = "VirtualMonicFilter", convention = "missing")

signature(object = "VirtualFilterModel", convention = "character")

Author(s)

Georgi N. Boshnakov

nSeasons Number of seasons

Description

Number of seasons.

Usage

nSeasons(object)

Arguments

object an object for which the notion of number of seasons makes sense.

Details

This is a generic function.

Value

an integer number

Methods

signature(object = "SarimaFilter")

signature(object = "VirtualArmaFilter")

nUnitRoots 41

Author(s)

Georgi N. Boshnakov

nUnitRoots Number of unit roots in a model

Description

Gives the number of roots with modulus one in a model.

Usage

nUnitRoots(object)

Arguments

object an object.

Details

nUnitRoots() gives the number of roots with modulus one in a model. This number is zero for
stationary models, see also isStationaryModel().

Value

a non-negative integer number

Methods

signature(object = "SarimaSpec")

signature(object = "VirtualStationaryModel")

Author(s)

Georgi N. Boshnakov

42 nvarOfAcfKP

nvarOfAcfKP Compute variances of autocorrelations under ARCH-type hypothesis

Description

Compute variances of autocorrelations under ARCH-type hypothesis.

Usage

nvarOfAcfKP(x, maxlag, center = FALSE, acfscale = c("one", "mom"))

Arguments

x time series.

maxlag a positive integer, the maximal lag.

center logical flag, if FALSE, the default, don’t center the time series before squaring,
see Details.

acfscale character string, specifying what factor to use for the autocovariances. "one"
stands for 1/n, "mom" for 1/(n− k), where n is the length of x and k is lag.

Details

nvarOfAcfKP computes estimates of n times the variances of sample autocorrelations of white
noise time series. It implements the result of (Kokoszka and Politis 2011) which holds under weak
assumptions. In particular, it can be used to test if the true autocorrelations of a time series are equal
to zero in GARCH modelling.

Value

a numeric vector

Author(s)

Georgi N. Boshnakov

References

Kokoszka PS, Politis DN (2011). “Nonlinearity of ARCH and stochastic volatility models and
Bartlett’s formula.” Probability and Mathematical Statistics, 31, 47–59.

See Also

whiteNoiseTest

Examples

see examples for whiteNoisTest()

nvcovOfAcf 43

nvcovOfAcf Covariances of sample autocorrelations

Description

Compute covariances of autocorrelations.

Usage

nvcovOfAcf(model, maxlag)

nvcovOfAcfBD(acf, ma, maxlag)

acfOfSquaredArmaModel(model, maxlag)

Arguments

model a model, see Details.

maxlag a positive integer number, the maximal lag.

acf autocorrelations.

ma a positive integer number, the order of the MA(q) model. The default is the
maximal lag available in acf.

Details

nvcovOfAcf computes the unscaled asymptotic autocovariances of sample autocorrelations of ARMA
models, under the classical assumptions when the Bartlett’s formulas are valid. It works directly
with the parameters of the model and uses Boshnakov (1996). Argument model can be any speci-
fication of ARMA models for which autocorrelations() will work, e.g. a list with components
"ar", "ma", and "sigma2".

nvcovOfAcfBD computes the same quantities but uses the formula given by Brockwell \& Davis
(1991) (eq. (7.2.6.), p. 222), which is based on the autocorrelations of the model. Argument acf
contains the autocorrelations.

For nvcovOfAcfBD, argument ma asks to treat the provided acf as that of MA(ma). Only the values
for lags up to ma are used and the rest are set to zero, since the autocorrelations of MA(ma) models
are zero for lags greater than ma. To force the use of all autocorrelations provided in acf, set ma to
the maximal lag available in acf or omit ma, since this is its default.

acfOfSquaredArmaModel(model,maxlag) is a convenience function which computes the autoco-
variances of the "squared" model, see Boshnakov (1996).

Value

an (maxlag,maxlag)-matrix

44 partialAutocorrelations-methods

Note

The name of nvcovOfAcf stands for “n times the variance-covariance matrix”, so it needs to be
divided by n to get the asymptotic variances and covariances.

Author(s)

Georgi N. Boshnakov

References

Boshnakov GN (1996). “Bartlett’s formulae—closed forms and recurrent equations.” Ann. Inst.
Statist. Math., 48, 49–59. doi: 10.1007/BF00049288.

Brockwell PJ, Davis RA (1991). Time series: theory and methods. 2nd ed.. Springer Series in
Statistics. Berlin etc.: Springer-Verlag..

See Also

whiteNoiseTest

Examples

MA(2)
ma2 <- list(ma = c(0.8, 0.1), sigma2 = 1)
nv <- nvcovOfAcf(ma2, maxlag = 4)
d <- diag(nvcovOfAcf(ma2, maxlag = 7))
cbind(ma2 = 1.96 * sqrt(d) / sqrt(200), iid = 1.96/sqrt(200))

acr <- autocorrelations(list(ma = c(0.8, 0.1)), maxlag = 7)
nvBD <- nvcovOfAcfBD(acr, 2, maxlag = 4)
all.equal(nv, nvBD) # TRUE

partialAutocorrelations-methods

Methods for function partialAutocorrelations

Description

Methods for function partialAutocorrelations.

Methods

signature(x = "ANY", maxlag = "ANY", lag_0 = "ANY")

signature(x = "mts", maxlag = "ANY", lag_0 = "missing")

signature(x = "PartialAutocovariances", maxlag = "ANY", lag_0 = "missing")

signature(x = "ts", maxlag = "ANY", lag_0 = "missing")

https://doi.org/10.1007/BF00049288

periodogram 45

Author(s)

Georgi N. Boshnakov

periodogram Obtain the most important period lags of a time series according to a
periodogram.

Description

Obtain the most important period lags of a time series according to a periodogram.

Usage

periodogram(x, ..., no.results = 20)

Arguments

x A vector containing the time series values

... Arguments to be passed to spectrum

no.results The number of results to be printed at the end. Defaults to the 20 most important
frequencies.

Details

Using the spectral function, obtain spectral density estimates at a number of frequencies and
rather than plotting, obtain the rank and period of the values. Return a given number of results
based on the level of interest of the user.

Value

A data.frame containing the following columns:

rank numeric vector containing the ranked importance of the frequency.

spectrum estimates of the spectral density at frequencies corresponding to freq.

frequency vector at which the spectral density is estimated.

period vector of corresponding periods.

46 plot-methods

plot-methods Plot methods in package sarima

Description

Plot methods in package sarima.

Methods

signature(x = "SampleAutocorrelations", y = "matrix")

signature(x = "SampleAutocorrelations", y = "missing")

signature(x = "SamplePartialAutocorrelations", y = "missing")

Author(s)

Georgi N. Boshnakov

Examples

n <- 5000
x <- sarima:::rgarch1p1(n, alpha = 0.3, beta = 0.55, omega = 1, n.skip = 100)
x.acf <- autocorrelations(x)
x.acf
x.pacf <- partialAutocorrelations(x)
x.pacf

plot(x.acf)
plot(x.acf, data = x)

plot(x.pacf)
plot(x.pacf, data = x)

plot(x.acf, data = x, main = "Autocorrelation test")
plot(x.pacf, data = x, main = "Partial autocorrelation test")

plot(x.acf, ylim = c(NA,1))
plot(x.acf, ylim.fac = 1.5)
plot(x.acf, data = x, ylim.fac = 1.5)
plot(x.acf, data = x, ylim = c(NA, 1))

prepareSimSarima 47

prepareSimSarima Prepare SARIMA simulations

Description

Prepare SARIMA simulations.

Usage

prepareSimSarima(model, x = NULL, eps = NULL, n, n.start = NA,
xintercept = NULL, rand.gen = rnorm)

S3 method for class 'simSarimaFun'
print(x, ...)

Arguments

model an object from a suitable class or a list, see Details.

x initial/before values of the time series, a list, a numeric vector or time series, see
Details.

eps initial/before values of the innovations, a list or a numeric vector, see Details.

n number of observations to generate, if missing an attempt is made to infer it
from x and eps.

n.start number of burn-in observations.

xintercept non-constant intercept which may represent trend or covariate effects.

rand.gen random number generator, defaults to N(0,1).

... ignored.

Details

prepareSimSarima does the preparatory work for simulation from a Sarima model, given the spec-
ifications and returns a function, which can be called as many times as needed.

The variance of the innovations is specified by the model and the simulated innovations are multi-
plied by the corresponding standard deviation. So, it is expected that the random number generator
simulates from a standardised distribution.

Argument model can be from any class representing models in the SARIMA family, such as "Sari-
maModel", or a list with components suitable to be passed to =new()= for such models.

The canonical form of argument x u is a list with components "before", "init" and "main". If any of
these components is missing or NULL, it is filled suitably. Any other components are ignored. If
x is not a list, it is put in component "main". Conceptually, the three components are concatenated
in the given order, the simulated values are put in "main" ("before" and "init" are not changed), the
"before" part is dropped and rest is returned. In effect, "before" and "init" can be viewed as initial
values but "init" is considered part of the generated series.

48 sarima

The format for eps is the same as that of x. The lengths of missing components in x are inferred
from the corresponding components of eps, and vice versa.

print.simSarimaFun is a print method for the objects generated by prepareSimSarima.

Value

for prepareSimSarima, a function to simulate time series, see Details. it is typically called multiple
times without arguments. All arguments have defaults set by prepareSimSarima.

n length of the simulated time series,

rand.gen random number generator,

... arguments for the random number generator, passed on to arima.sim.

Author(s)

Georgi N. Boshnakov

See Also

sim_sarima

Examples

mo1 <- list(ar = 0.9, iorder = 1, siorder = 1, nseasons = 4, sigma2 = 2)
fs1 <- prepareSimSarima(mo1, x = list(before = rep(0,6)), n = 100)
tmp1 <- fs1()
tmp1
plot(ts(tmp1))

fs2 <- prepareSimSarima(mo1, x = list(before = rep(1,6)), n = 100)
tmp2 <- fs2()
plot(ts(tmp2))

mo3 <- mo1
mo3[["ar"]] <- 0.5
fs3 <- prepareSimSarima(mo3, x = list(before = rep(0,6)), n = 100)
tmp3 <- fs3()
plot(ts(tmp3))

sarima Fit extended SARIMA models

Description

Fit extended SARIMA models, which can include lagged exogeneous variables, general unit root
non-stationary factors, multiple periodicities, and multiplicative terms in the SARIMA specifica-
tion. The models are specified with a flexible formula syntax and contain as special cases many
models with specialised names, such as ARMAX and reg-ARIMA.

sarima 49

Usage

sarima(model, data = NULL, ss.method = "sarima", use.symmetry = FALSE,
SSinit = "Rossignol2011")

Arguments

model a model formula specifying the model.

data a list or data frame, usually can be omitted.

ss.method state space engine to use, defaults to "sarima". (Note: this argument will prob-
ably be renamed.)

use.symmetry a logical argument indicating whether symmetry should be used to estimate the
unit polynomial.

SSinit method to use for computation of the stationary part of the initial covariance
matrix, one of "Rossignol2011", "gnb", "Gardner1980".

Details

sarima fits extended SARIMA models, which can include exogeneous variables, general unit root
non-stationary factors and multiplicative terms in the SARIMA specification.

Let {Yt} be a time series and f(t) and g(t) be functions of time and/or (possibly lagged) exogeneous
variables.

An extended pure SARIMA model for Yt can be written with the help of the backward shift operator
as

U(B)Φ(B)Yt = Θ(B)εt,

where {εt} is white noise, and U(z), Φ(z), and Θ(z) are polynomials, such that all roots of U(z)
are on the unit circle, while the roots of Φ(z) and Θ(z) are outside the unit circle. If unit roots are
missing, ie U(z) ≡ 1, the model is stationary with mean zero.

A reg-SARIMA or X-SARIMA model can be defined as a regression with SARIMA residuals:

Yt = f(t) + Y c
t

U(B)Φ(B)Y c
t = Θ(B)εt,

where Y c
t = Yt − f(t) is the centred Yt. This can be written equivalently as a single equation:

U(B)Φ(B)(Yt − f(t)) = Θ(B)εt.

The regression function f(t) can depend on time and/or (possibly lagged) exogeneous variables.
We call it centering function. If Y c

t is stationary with mean zero, f(t) is the mean of Yt. If f(t) is
constant, say mu, Yt is stationary with mean mu. Note that the two-equation form above shows that
in that case mu is the intercept in the first equation, so it is perfectly reasonable to refer to it also as
intercept but to avoid confusion we reserve the term intercept for g(t) below.

If the SARIMA part is stationary, then EYt = f(t), so f(t) can be interpreted as trend. In this case
the above specification is often referred to as mean corrected form of the model.

An alternative way to specify the regression part is to add the regression function, say {g(t)}, to the
right-hand side of the SARIMA equation:

U(B)Φ(B)Yt = g(t) + Θ(B)εt.

50 sarima

In the stationary case this is the classical ARMAX specification. This can be written in two-stage
form in various ways, eg

U(B)Φ(B)Yt = (1−Θ(B))εt + ut,

ut = g(t) + εt.

So, in a sense, g(t) is a trend associated with the residuals from the SARIMA modelling. We
refer to this form as intercept form of the model (as opposed to the mean-corrected form discussed
previously).

In general, if there are no exogeneous variables the mean-corrected model is equivalent to some
intercept model, which gives some justification of the terminology, as well. If there are exogeneous
variables equivalence may be achievable but at the expense of introducing more lags in the model,
whish is not desirable in general.

Some examples of equivalence. Let Y be a stationary SARIMA process (U(z) = 1) with mean µ.
Then the mean-corrected form of the SARIMA model is

Φ(B)(Yt − µ) = Θ(B)εt,

while the intercept form is
Φ(B)Yt = c+ Θ(B)εt,

where c = Φ(B)µ. So, in this case the mean-corrected model X-SARIMA model with f(t) = µ is
equivalent to the intercept model with g(t) = Φ(B)µ.

As another example, with f(t) = bt, the mean-corrected model is (1−B)(Yt−bt) = εt. Expanding
the left-hand side we obtain the intercept form (1 − B)Yt = b + εt, which demonstrates that Yt is
a random walk with drift g(t) = b.

Model specification
Argument model specifies the model with a syntax similar to other model fitting functions in R. A
formula can be given for each of the components discussed above as y ~ f | SARIMA | g, where f,
SARIMA and g are model formulas giving the specifications for the centering function f, the SARIMA
specification, and the intercept function g. In normal use only one of f or g will be different from
zero. f should always be given (use 0 to specify that it is identical to zero), but g can be omitted
altogether. Sometimes we refer to the terms specified by f and g by xreg and regx, respectively.

Model formulas for trends and exogeneous regressions
The formulas for the centering and intercept (ie f and g) use the same syntax as in linear models
with some additional functions for trigonometric trends, polynomial trends and lagged variables.

Here are the available specialised terms:

.p(d) Orthogonal polynomials over 1:length(y) of degree d (starting from degree 1, no constant).

t Stands for 1:length(y). Note that powers need to be protected by I(), e.g. y ~ 1 + .t + I(.t^2).

.cs(s, k) cos/sin pair for the k-th harmonic of 2pi/s. Use vector k to specify several harmonics.

.B(x, lags) Include lagged terms of x, Blags(x[t]) = x[t − lags]. lags can be a vector. If x is a
matrix, the specified lags are taken from each column.

Model formulas for SARIMA models
A flexible syntax is provided for the specification of the SARIMA part of the model. It is formed
using a number of primitives for stationary and unit root components, which have non-seasonal

sarima 51

and seasonal variants. Arbitrary number of multiplicative factors and multiple seasonalities can be
specified.

The SARIMA part of the model can contain any of the following terms. They can be repeated as
needed. The first argument for all seasonal operators is the number of seasons.

ar(p) autoregression term of order p

ma(q) moving average term of order q

sar(s,p) seasonal autoregression term (s seasons, order p)

sma(s,q) seasonal moving average term (s seasons, order q)

i(d) (1−B)d

s(seas) summation operator, (1 +B + · · ·+Bseas−1)

u(x) quadratic unit root term, corresponding to a complex pair on the unit circle. If x is real, it
specifies the argument of one of the roots as a fraction of 2π. If z is complex, it is the root
itself.
The real roots of modulus one (1 and −1) should be specified using i(1) and s(2), which
correspond to 1−B and 1 +B, respectively.

su(s, h) quadratic unit root terms corresponding to seasonal differencing factors. h specifies the
desired harmonic which should be one of 1,2, ..., [s/2]. Several harmonics can be specified by
setting h to a vector.

ss(s, p) seasonal summation operator, (1 +Bs + · · ·+B(s−1)p)

Terms with parameters can contain additional arguments specifying initial values, fixed parameters,
and transforms. For ar, ma, sar, sma, values of the coefficients can be specified by an unnamed
argument after the parameters given in the descriptions above. In estimation these values will be
taken as initial values for optimisation. By default, all coefficients are taken to be non-fixed.

Argument fixed can be used to fix some of them. If it is a logical vector it should be of length one
or have the same length as the coefficients. If fixed is of length one and TRUE, all coefficients are
fixed. If FALSE, all are non-fixed. Otherwise, the TRUE/FALSE values in fixed determine the
fixedness of the corresponding coefficients.

fixed can also be a vector of positive integer numbers specifying the indices of fixed coefficients,
the rest are non-fixed.

Sometimes it may be easier to declare more (e.g. all) coefficients as fixed and then ‘unfix’ selec-
tively. Argument nonfixed can be used to mark some coefficients as non-fixed after they have been
declared fixed. Its syntax is the same as for fixed.

TODO: streamline "atanh.tr"

TODO: describe SSinit

Value

an object from S3 class Sarima

(Note: the format of the object is still under development and may change; use accessor functions,
such as coef(), where provided.)

52 sarima

Note

Currently the implementation of the intercept form (ie the third part of the model formula) is in-
complete.

Author(s)

Georgi N. Boshnakov

See Also

arima

Examples

AirPassengers example
fit the classic airline model using arima()
ap.arima <- arima(log(AirPassengers), order = c(0,1,1), seasonal = c(0,1,1))

samemodel using twoequivalent ways to specify it
ap.baseA <- sarima(log(AirPassengers) ~

0 | ma(1, c(-0.3)) + sma(12,1, c(-0.1)) + i(1) + si(12,1),
ss.method = "base")

ap.baseB <- sarima(log(AirPassengers) ~
0 | ma(1, c(-0.3)) + sma(12,1, c(-0.1)) + i(2) + s(12),
ss.method = "base")

ap.baseA
summary(ap.baseA)
ap.baseB
summary(ap.baseB)

as above, but drop 1-B from the model:
ap2.arima <- arima(log(AirPassengers), order = c(0,0,1), seasonal = c(0,1,1))
ap2.baseA <- sarima(log(AirPassengers) ~

0 | ma(1, c(-0.3)) + sma(12,1, c(-0.1)) + si(12,1),
ss.method = "base")

ap2.baseB <- sarima(log(AirPassengers) ~
0 | ma(1, c(-0.3)) + sma(12,1, c(-0.1)) + i(1) + s(12),
ss.method = "base")

for illustration, here the non-stationary part is
(1-B)^2(1+B+...+B^5) = (1-B)(1-B^6)
(compare to (1-B)(1-B^{12}) = (1-B)(1-B^6)(1+B^6))
ap3.base <- sarima(log(AirPassengers) ~

0 | ma(1, c(-0.3)) + sma(12,1, c(-0.1)) + i(2) + s(6),
ss.method = "base")

further unit roots, equivalent specifications for the airline model
tmp.su <- sarima(log(AirPassengers) ~

0 | ma(1, c(-0.3)) + sma(12,1, c(-0.1)) + i(2) + s(2) + su(12,1:5),
ss.method = "base")

tmp.su$interna$delta_poly

SarimaModel-class 53

prod(tmp.su$interna$delta_poly)
zapsmall(coef(prod(tmp.su$interna$delta_poly)))
tmp.su

tmp.u <- sarima(log(AirPassengers) ~
0 | ma(1, c(-0.3)) + sma(12,1, c(-0.1)) + i(2) + s(2) + u((1:5)/12),
ss.method = "base")

tmp.u

SarimaModel-class Class SarimaModel in package sarima

Description

Class SarimaModel in package sarima.

Objects from the Class

Objects can be created by calls of the form new("SarimaModel",...,ar,ma,sar,sma).

Class SarimaModel represents standard SARIMA models. It has provision for centering and/or
intercept (in normal use at most one of these is needed). Their default values are zeroes.

Note however that the default for the variance of the innovations (slot "sigma2") is NA. The rationale
for this choice is that for some calculations the innovations’ variance is not needed and, more
importantly, it is far too easy to forget to include it in the model (at least for the author), which may
lead silently to wrong results if the "natural" default value of one is used.

Slots

center: Object of class "numeric", a number, if not zero the ARIMA equation is for X(t) - center.

intercept: Object of class "numeric", a number, the intercept in the ARIMA equation.

sigma2: Object of class "numeric", a positive number, the innovations variance.

nseasons: Object of class "numeric", a positive integer, the number of seasons. For non-seasonal
models this is NA.

iorder: Object of class "numeric", non-negative integer, the integration order.

siorder: Object of class "numeric", non-negative integer, the seasonal integration order.

ar: Object of class "BJFilter", the non-seasonal AR part of the model.

ma: Object of class "SPFilter", the non-seasonal MA part of the model.

sar: Object of class "BJFilter", the seasonal AR part of the model.

sma: Object of class "SPFilter", the seasonal MA part of the model.

Extends

Class "VirtualFilterModel", directly. Class "SarimaSpec", directly. Class "SarimaFilter", by
class "SarimaSpec", distance 2. Class "VirtualSarimaFilter", by class "SarimaSpec", distance
3. Class "VirtualCascadeFilter", by class "SarimaSpec", distance 4. Class "VirtualMonicFilter",
by class "SarimaSpec", distance 5.

54 SarimaModel-class

Methods

SARIMA models contain as special cases a number of models. The one-argument method of
modelCoef is essentially a definition of model coefficients for SARIMA models. The two-argument
methods request the model coefficients according to the convention of the class of the second argu-
ment. The second argument may also be a character string naming the target class.

Essentially, the methods for modelCoef are a generalisation of =as()= methods and can be inter-
preted as such (to an extent, the result is not necessarilly from the target class, not least because the
target class may be virtual).

modelCoef signature(object = "SarimaModel",convention = "missing"): Converts object
to "SarimaFilter".

modelCoef signature(object = "SarimaModel",convention = "SarimaFilter"): Converts object
to "SarimaFilter", equivalent to the one-argument call modelCoef(object).

modelCoef signature(object = "SarimaModel",convention = "ArFilter"): Convert object
to "ArFilter". An error is raised if object has non-trivial moving average part.

modelCoef signature(object = "SarimaModel",convention = "MaFilter"): Convert object
to "MaFilter". An error is raised if object has non-trivial autoregressive part.

modelCoef signature(object = "SarimaModel",convention = "ArmaFilter"): Convert object
to "ArmaFilter". This operation always successeds.

modelCoef signature(object = "SarimaModel",convention = "character"): The second ar-
gument gives the name of the target class. This is conceptually equivalent to modelCoef(object,new(convention)).

modelOrder gives the order of the model according to the conventions of the target class. An error
is raised if object is not compatible with the target class.

modelOrder signature(object = "SarimaModel",convention = "ArFilter"): ...

modelOrder signature(object = "SarimaModel",convention = "ArmaFilter"): ...

modelOrder signature(object = "SarimaModel",convention = "ArmaModel"): ...

modelOrder signature(object = "SarimaModel",convention = "ArModel"): ...

modelOrder signature(object = "SarimaModel",convention = "MaFilter"): ...

modelOrder signature(object = "SarimaModel",convention = "MaModel"): ...

modelOrder signature(object = "SarimaModel",convention = "missing"): ...

The polynomials associated with object can be obtained with the following methods. Note that
target "ArmaFilter" gives the fully expanded products of the AR and MA polynomials, as needed,
e.g., for filtering.

modelPoly signature(object = "SarimaModel",convention = "ArmaFilter"): ‘ Gives the fully
expanded polynomials as a list

modelPoly signature(object = "SarimaModel",convention = "missing"): Gives the polyno-
mials associated with the model as a list.

modelPolyCoef signature(object = "SarimaModel",convention = "ArmaFilter"): Give the
coefficients of the fully expanded polynomials as a list.

modelPolyCoef signature(object = "SarimaModel",convention = "missing"): Gives the co-
efficients of the polynomials associated with the model as a list.

sigmaSq 55

Author(s)

Georgi N. Boshnakov

See Also

ArmaModel

Examples

showClass("SarimaModel")

sm0 <- new("SarimaModel", nseasons = 12)

sm1 <- new("SarimaModel", nseasons = 12, intercept = 3)
alternatively, pass a model and modify with named arguments
sm1b <- new("SarimaModel", sm0, intercept = 3)
identical(sm1, sm1b) # TRUE

Note: in the above models var. of innovations is NA

sm2 <- new("SarimaModel", ar = 0.9, nseasons = 12, intercept = 3, sigma2 = 1)
sm2b <- new("SarimaModel", sm1, ar = 0.9, sigma2 = 1)
sm2c <- new("SarimaModel", sm0, ar = 0.9, intercept = 3, sigma2 = 1)
identical(sm2, sm2b) # TRUE
identical(sm2, sm2c) # TRUE

sm3 <- new("SarimaModel", ar = 0.9, sar= 0.8, nseasons = 12, intercept = 3,
sigma2 = 1)

sm3b <- new("SarimaModel", sm2, sar = 0.8)
identical(sm3, sm3b) # TRUE

new("SarimaModel", ar = 0.9)

sigmaSq Get the innovation variance of models

Description

Get the innovation variance of models.

Usage

sigmaSq(object)

Arguments

object an object from a suitable class.

56 sim_sarima

Details

sigmaSq() gives the innovation variance of objects from classes for which it makes sense, such as
ARMA models.

The value depends on the class of the object, e.g. for ARMA models it is a scalar in the univariate
case and a matrix in the multivariate one.

Methods

signature(object = "InterceptSpec")

Author(s)

Georgi N. Boshnakov

sim_sarima Simulate trajectories of seasonal arima models

Description

Simulate trajectories of seasonal arima models.

Usage

sim_sarima(model, n = NA, rand.gen = rnorm, n.start = NA, x, eps,
xcenter = NULL, xintercept = NULL, ...)

Arguments

model specification of the model, a list, see ‘Details’.

rand.gen random number generator for the innovations.

n length of the time series.

n.start number of burn-in observations.

x initial/before values of the time series, a list, a numeric vector or time series, see
Details.

eps initial/before values of the innovations, a list or a numeric vector, see Details.

xintercept non-constant intercept which may represent trend or covariate effects.

xcenter currently ignored.

... additional arguments for arima.sim and rand.gen, see ‘Details’.

sim_sarima 57

Details

The model is specified by the argument "model" which is a list with elements suitable to be passed
to new("SarimaModel",...), see the description of class "SarimaModel". Here are some of the
possible components:

nseasons number of seasons in a year (or whatever is the larger time unit)

iorder order of differencing, specifies the factor (1−B)d1 for the model.

siorder order of seasonal differencing, specifies the factor (1−Bperiod)ds for the model.

ar ar parameters (non-seasonal)

ma ma parameters (non-seasonal)

sar seasonal ar parameters

sma seasonal ma parameters

Additional arguments for rand.gen may be specified via the ". . . " argument. In particular, the
length of the generated series is specified with argument n. Arguments for rand.gen can also be
passed via the ". . . " argument.

sim_sarima calls internally arima.sim to simulate the ARMA part of the model. Then undiffer-
ences the result to obtain the end result.

The function returns the simulated time series from the requested model.

Information about the model is printed on the screen if info = "print". To suppress this, set info
to any other value.

For multple simulations with the same (or almost the same) setup, it is better to execute prepareSimSarima
once and call the function returned by it as many times as needed.

Value

an object of class "ts"

Author(s)

Georgi N. Boshnakov

Examples

require("PolynomF") # guaranteed to be available since package "sarima" imports it.

x <- sim_sarima(n=144, model = list(ma=0.8)) # MA(1)
x <- sim_sarima(n=144, model = list(ar=0.8)) # AR(1)

x <- sim_sarima(n=144, model = list(ar=c(rep(0,11),0.8))) # SAR(1), 12 seasons
x <- sim_sarima(n=144, model = list(ma=c(rep(0,11),0.8))) # SMA(1)

more enlightened SAR(1) and SMA(1)
x <- sim_sarima(n=144,model=list(sar=0.8, nseasons=12, sigma2 = 1)) # SAR(1), 12 seasons
x <- sim_sarima(n=144,model=list(sma=0.8, nseasons=12, sigma2 = 1)) # SMA(1)

x <- sim_sarima(n=144, model = list(iorder=1, sigma2 = 1)) # (1-B)X_t = e_t (random walk)

58 summary.SarimaModel

acf(x)
acf(diff(x))

x <- sim_sarima(n=144, model = list(iorder=2, sigma2 = 1)) # (1-B)^2 X_t = e_t
x <- sim_sarima(n=144, model = list(siorder=1,

nseasons=12, sigma2 = 1)) # (1-B)^{12} X_t = e_t

x <- sim_sarima(n=144, model = list(iorder=1, siorder=1,
nseasons=12, sigma2 = 1))

x <- sim_sarima(n=144, model = list(ma=0.4, iorder=1, siorder=1,
nseasons=12, sigma2 = 1))

x <- sim_sarima(n=144, model = list(ma=0.4, sma=0.7, iorder=1, siorder=1,
nseasons=12, sigma2 = 1))

x <- sim_sarima(n=144, model = list(ar=c(1.2,-0.8), ma=0.4,
sar=0.3, sma=0.7, iorder=1, siorder=1,
nseasons=12, sigma2 = 1))

x <- sim_sarima(n=144, model = list(iorder=1, siorder=1,
nseasons=12, sigma2 = 1),

x = list(init=AirPassengers[1:13]))

p <- polynom(c(1,-1.2,0.8))
solve(p)
abs(solve(p))

sim_sarima(n=144, model = list(ar=c(1.2,-0.8), ma=0.4, sar=0.3, sma=0.7,
iorder=1, siorder=1, nseasons=12))

x <- sim_sarima(n=144, model=list(ma=0.4, iorder=1, siorder=1, nseasons=12))
acf(x, lag.max=48)
x <- sim_sarima(n=144, model=list(sma=0.4, iorder=1, siorder=1, nseasons=12))
acf(x, lag.max=48)
x <- sim_sarima(n=144, model=list(sma=0.4, iorder=0, siorder=0, nseasons=12))
acf(x, lag.max=48)
x <- sim_sarima(n=144, model=list(sar=0.4, iorder=0, siorder=0, nseasons=12))
acf(x, lag.max=48)
x <- sim_sarima(n=144, model=list(sar=-0.4, iorder=0, siorder=0, nseasons=12))
acf(x, lag.max=48)

x <- sim_sarima(n=144, model=list(ar=c(1.2, -0.8), ma=0.4, sar=0.3, sma=0.7,
iorder=1, siorder=1, nseasons=12))

use xintercept to include arbitrary trend/covariates
sim_sarima(n = 144, model = list(sma = 0.4, ma = 0.4, sar = 0.8, ar = 0.5,

nseasons = 12, sigma2 = 1), xintercept = 1:144)

summary.SarimaModel Methods for summary in package sarima

Description

Methods for summary in package sarima.

whiteNoiseTest 59

Usage

S3 method for class 'SarimaModel'
summary(object, ...)
S3 method for class 'SarimaFilter'
summary(object, ...)
S3 method for class 'SarimaSpec'
summary(object, ...)

Arguments

object an object from the corresponding class.

... further arguments for methods.

Author(s)

Georgi N. Boshnakov

whiteNoiseTest White noise tests

Description

White noise tests.

Usage

whiteNoiseTest(object, h0, ...)

Arguments

object an object, such as sample autocorrelations or partial autocorrelations.

h0 the null hypothesis, currently "iid" or "garch".

... additional arguments passed on to methods.

Details

whiteNoiseTest carries out tests for white noise. The null hypothesis is identified by argument h0,
based on which whiteNoiseTest chooses a suitable function to call. The functions implementing
the tests are also available to be called directly and their documentation should be consulted for
further arguments that are available.

If h0 = "iid", the test statistics and rejection regions can be use to test if the underlying time series
is iid. Argument method specifies the method for portmanteau tests: one of "LiMcLeod" (default),
"LjungBox", "BoxPierce".

If h0 = "garch", the null hypothesis is that the time series is GARCH, see Francq \& Zakoian
(2010). The tests in this case are based on a non-parametric estimate of the asymptotic covariance
matrix.

60 whiteNoiseTest

Portmonteau statistics and p-values are computed for the lags specified by argument nlags. If it is
missing, suitable lags are chosen automatically.

If argument interval is TRUE, confidence intervals for the individual autocorrelations or partial
autocorrelations are computed.

Value

a list with component test and, if ci=TRUE, component ci.

Note

Further methods will be added in the future.

Author(s)

Georgi N. Boshnakov

References

Francq C, Zakoian J (2010). GARCH models: structure, statistical inference and financial applica-
tions. John Wiley & Sons. ISBN 978-0-470-68391-0.

Li WK (2004). Diagnostic checks in time series. Chapman & Hall/CRC Press.

See Also

acfGarchTest (h0 = "garch"), acfIidTest (h0 = "iid");

acfMaTest

Examples

n <- 5000
x <- sarima:::rgarch1p1(n, alpha = 0.3, beta = 0.55, omega = 1, n.skip = 100)
x.acf <- autocorrelations(x)
x.pacf <- partialAutocorrelations(x)

x.iid <- whiteNoiseTest(x.acf, h0 = "iid", nlags = c(5,10,20), x = x, method = "LiMcLeod")
x.iid

x.iid2 <- whiteNoiseTest(x.acf, h0 = "iid", nlags = c(5,10,20), x = x, method = "LjungBox")
x.iid2

x.garch <- whiteNoiseTest(x.acf, h0 = "garch", nlags = c(5,10,20), x = x)
x.garch

xarmaFilter 61

xarmaFilter Applies an extended ARMA filter to a time series

Description

Filter time series with an extended arma filter. If whiten is FALSE (default) the function applies the
given ARMA filter to eps (eps is often white noise). If whiten is TRUE the function applies the
“inverse filter” to x, effectively computing residuals.

Usage

xarmaFilter(model, x = NULL, eps = NULL, from = NULL, whiten = FALSE,
xcenter = NULL, xintercept = NULL)

Arguments

x the time series to be filtered, a vector.

eps residuals, a vector or NULL.

model the model parameters, a list with components "ar", "ma", "center" and "intercept",
see Details.

from the index from which to start filtering.

whiten if TRUE use x as input and apply the inverse filter to produce eps ("whiten" x),
if FALSE use eps as input and generate x ("colour" eps).

xcenter a vector of means of the same length as the time series, see Details.

xintercept a vector of intercepts having the length of the series, see Details.

Details

The model is specified by argument model, which is a list with the following components:

ar the autoregression parameters,

ma the moving average parameters,

center center by this value,

intercept intercept.

model$center and model$intercept are scalars and usually at most one of them is nonzero. They
can be considered part of the model specification. In contrast, arguments xcenter and xintercept
are vectors of the same length as x. They can represent contributions from covariate variables.
Usually at most one of xcenter and xintercept is used.

The description below uses µt and ct for the contributions by model$center plus xcenter and
model$intercept plus xintercept, respectively. The time series {xt} and {εt} are represented
by x and eps in the R code. Let

yt = xt − µt

62 xarmaFilter

be the centered series. where the centering term µt is essentially the sum of center and xcenter
and is not necessarilly the mean. The equation relating the centered series, yt = xt − µt, and eps
is the following:

yt = ct +

p∑
i=1

φ(i)yt−i +

q∑
i=1

θ(i)εt−i + εt

where ct is the intercept (basically the sum of intercept with xintercept).

If whiten = FALSE, yt is computed for t=from,...,n using the above formula, i.e. the filter is
applied to get y from eps (and some initial values). If eps is white noise, it can be said that y is
obtained by “colouring” the white noise eps. This can be used, for example, to simulate ARIMA
time series. Finally, the centering term is added back, xt = yt + µt for t=from,...,n, and the
modified x is returned. The first from -1 elements of x are left unchanged.

The inverse filter is obtained by rewriting the above equation as an equation expressing εt in terms
of the remaining quantities:

εt = −ct −
q∑

i=1

θ(i)εt−i −
p∑

i=1

φ(i)yt−i + yt

If whiten = TRUE, xarmaFilter uses this formula for t=from,...,n to compute eps from y (and
some initial values). If eps is white noise, then it can be said that the time series y has been
whitened.

In both cases the first few values in x and/or eps are used as initial values.

The centering is formed from model$center and argument xcenter. If model$center is supplied
it is recycled to the length of the series, x, and subtracted from x. If argument xcenter is supplied,
it is subtracted from x. If both model$center and xcenter are supplied their sum is subtracted
from x.

xarmaFilter can be used to simulate ARMA series with the default value of whiten = FALSE. In
this case eps is the input series and y the output: Then model$center and/or xcenter are added to
y to form the output vector x.

Residuals corresponding to a series x can be obtained by setting whiten = TRUE. In this case x is
the input series. The elements of the output vector eps are calculated by the formula for εt given
above. There is no need in this case to restore x since eps is returned.

In both cases any necessary initial values are assumed to be already in the vectors and provide the
first from -1 values in the returned vectors. Argument from should not be smaller than the default
value max(p,q)+1.

xarmaFilter calls the lower level function coreXarmaFilter to do the computation.

Value

the result of applying the filter or its inverse, as descibed in Details: if whiten = FALSE, the modified
x; if whiten = TRUE, the modified eps.

Author(s)

Georgi N. Boshnakov

xarmaFilter 63

Examples

define a seasonal ARIMA model
m1 <- new("SarimaModel", iorder = 1, siorder = 1, ma = -0.3, sma = -0.1, nseasons = 12)

model0 <- modelCoef(m1, "ArmaModel")
model1 <- as(model0, "list")

ap.1 <- xarmaFilter(model1, x = AirPassengers, whiten = TRUE)
ap.2 <- xarmaFilter(model1, x = AirPassengers, eps = ap.1, whiten = FALSE)
ap <- AirPassengers
ap[-(1:13)] <- 0 # check that the filter doesn't use x, except for initial values.
ap.2a <- xarmaFilter(model1, x = ap, eps = ap.1, whiten = FALSE)
ap.2a - ap.2 ## indeed = 0
##ap.3 <- xarmaFilter(model1, x = list(init = AirPassengers[1:13]), eps = ap.1, whiten = TRUE)

now set some non-zero initial values for eps
eps1 <- numeric(length(AirPassengers))
eps1[1:13] <- rnorm(13)
ap.A <- xarmaFilter(model1, x = AirPassengers, eps = eps1, whiten = TRUE)
ap.Ainv <- xarmaFilter(model1, x = ap, eps = ap.A, whiten = FALSE)
AirPassengers - ap.Ainv # = 0

compare with sarima.f (an old function)
compute predictions starting at from = 14
pred1 <- sarima.f(past = AirPassengers[1:13], n = 131, ar = model1$ar, ma = model1$ma)
pred2 <- xarmaFilter(model1, x = ap, whiten = FALSE)
pred2 <- pred2[-(1:13)]
all(pred1 == pred2) ##TRUE

Index

∗ arima
arma_Q0Gardner, 14
arma_Q0gnb, 15
prepareSimSarima, 47
sarima, 48

∗ arma
arma_Q0Gardner, 14
arma_Q0gnb, 15
armaccf_xe, 9
ArmaModel, 11

∗ classes
ArmaModel-class, 13
InterceptSpec-class, 31
SarimaModel-class, 53

∗ garch
acfGarchTest, 5
nvarOfAcfKP, 42
whiteNoiseTest, 59

∗ hplot
plot-methods, 46

∗ htest
acfGarchTest, 5
acfIidTest, 6
acfMaTest, 8
arma_Q0Gardner, 14
whiteNoiseTest, 59

∗ methods
autocorrelations-methods, 19
autocovariances-methods, 20
coerce-methods, 20
filterCoef-methods, 24
filterOrder-methods, 26
filterPoly-methods, 27
filterPolyCoef-methods, 28
isStationaryModel, 32
modelCenter, 33
modelCoef-methods, 35
modelIntercept, 37
modelOrder-methods, 39

modelPoly-methods, 39
modelPolyCoef-methods, 40
nSeasons, 40
nUnitRoots, 41
partialAutocorrelations-methods,

44
plot-methods, 46
sigmaSq, 55

∗ package
sarima-package, 3

∗ sarima
modelPoly-methods, 39
prepareSimSarima, 47
SarimaModel-class, 53

∗ simulation
prepareSimSarima, 47
sim_sarima, 56

∗ ts
acfGarchTest, 5
acfIidTest, 6
acfMaTest, 8
armaccf_xe, 9
ArmaModel, 11
ArmaModel-class, 13
autocorrelations, 17
filterCoef, 22
fun.forecast, 29
modelCenter, 33
modelCoef, 33
modelIntercept, 37
modelOrder, 37
nSeasons, 40
nUnitRoots, 41
nvarOfAcfKP, 42
nvcovOfAcf, 43
sarima, 48
sarima-package, 3
SarimaModel-class, 53
sigmaSq, 55

64

INDEX 65

sim_sarima, 56
whiteNoiseTest, 59
xarmaFilter, 61

acfGarchTest, 5, 8, 9, 60
acfIidTest, 6, 6, 9, 60
acfIidTest,ANY-method (acfIidTest), 6
acfIidTest,missing-method (acfIidTest),

6
acfIidTest,SampleAutocorrelations-method

(acfIidTest), 6
acfIidTest-methods (acfIidTest), 6
acfMaTest, 8, 8, 60
acfOfSquaredArmaModel (nvcovOfAcf), 43
acfWnTest (acfGarchTest), 5
arima, 16, 52
arma_Q0bis (arma_Q0Gardner), 14
arma_Q0Gardner, 14
arma_Q0gnb, 15
arma_Q0gnbR (arma_Q0Gardner), 14
arma_Q0naive (arma_Q0Gardner), 14
armaacf, 18
armaacf (armaccf_xe), 9
armaccf_xe, 9, 18
ArmaFilter, 13
ArmaModel, 4, 11, 12–14, 31, 55
ArmaModel-class, 13
ArmaSpec, 13
ArModel, 12–14
ArModel (ArmaModel), 11
ArModel-class (ArmaModel-class), 13
autocorrelations, 4, 17, 20
autocorrelations,ANY,ANY,ANY-method

(autocorrelations-methods), 19
autocorrelations,ANY,ANY,missing-method

(autocorrelations-methods), 19
autocorrelations,Autocorrelations,ANY,missing-method

(autocorrelations-methods), 19
autocorrelations,Autocorrelations,missing,missing-method

(autocorrelations-methods), 19
autocorrelations,Autocovariances,ANY,missing-method

(autocorrelations-methods), 19
autocorrelations,PartialAutocorrelations,ANY,missing-method

(autocorrelations-methods), 19
autocorrelations,PartialAutocovariances,ANY,missing-method

(autocorrelations-methods), 19
autocorrelations,SamplePartialAutocorrelations,ANY,missing-method

(autocorrelations-methods), 19

autocorrelations,SamplePartialAutocovariances,ANY,missing-method
(autocorrelations-methods), 19

autocorrelations,VirtualArmaModel,ANY,missing-method
(autocorrelations-methods), 19

autocorrelations,VirtualSarimaModel,ANY,missing-method
(autocorrelations-methods), 19

autocorrelations-methods, 19
autocovariances, 10
autocovariances (autocorrelations), 17
autocovariances,ANY,ANY-method

(autocovariances-methods), 20
autocovariances,Autocovariances,ANY-method

(autocovariances-methods), 20
autocovariances,Autocovariances,missing-method

(autocovariances-methods), 20
autocovariances,VirtualArmaModel,ANY-method

(autocovariances-methods), 20
autocovariances,VirtualAutocovariances,ANY-method

(autocovariances-methods), 20
autocovariances-methods, 20

backwardPartialCoefficients
(autocorrelations), 17

backwardPartialVariances
(autocorrelations), 17

coerce,ANY,Autocorrelations-method
(coerce-methods), 20

coerce,ANY,ComboAutocorrelations-method
(coerce-methods), 20

coerce,ANY,ComboAutocovariances-method
(coerce-methods), 20

coerce,ANY,PartialAutocorrelations-method
(coerce-methods), 20

coerce,ANY,PartialAutocovariances-method
(coerce-methods), 20

coerce,ANY,PartialVariances-method
(coerce-methods), 20

coerce,ArmaSpec,list-method
(coerce-methods), 20

coerce,Autocorrelations,ComboAutocorrelations-method
(coerce-methods), 20

coerce,Autocorrelations,ComboAutocovariances-method
(coerce-methods), 20

coerce,Autocovariances,ComboAutocorrelations-method
(coerce-methods), 20

coerce,Autocovariances,ComboAutocovariances-method
(coerce-methods), 20

66 INDEX

coerce,BJFilter,SPFilter-method
(coerce-methods), 20

coerce,numeric,BJFilter-method
(coerce-methods), 20

coerce,numeric,SPFilter-method
(coerce-methods), 20

coerce,PartialVariances,Autocorrelations-method
(coerce-methods), 20

coerce,PartialVariances,Autocovariances-method
(coerce-methods), 20

coerce,PartialVariances,ComboAutocorrelations-method
(coerce-methods), 20

coerce,PartialVariances,ComboAutocovariances-method
(coerce-methods), 20

coerce,SarimaFilter,ArmaFilter-method
(coerce-methods), 20

coerce,SarimaModel,list-method
(coerce-methods), 20

coerce,SPFilter,BJFilter-method
(coerce-methods), 20

coerce,vector,Autocorrelations-method
(coerce-methods), 20

coerce,vector,Autocovariances-method
(coerce-methods), 20

coerce,vector,PartialAutocorrelations-method
(coerce-methods), 20

coerce,vector,PartialAutocovariances-method
(coerce-methods), 20

coerce,VirtualArmaFilter,list-method
(coerce-methods), 20

coerce,VirtualSarimaModel,ArmaModel-method
(coerce-methods), 20

coerce-methods, 20

filterCoef, 22, 26–28
filterCoef,BJFilter,character-method

(filterCoef-methods), 24
filterCoef,SarimaFilter,character-method

(filterCoef-methods), 24
filterCoef,SarimaFilter,missing-method

(filterCoef-methods), 24
filterCoef,SPFilter,character-method

(filterCoef-methods), 24
filterCoef,VirtualArmaFilter,character-method

(filterCoef-methods), 24
filterCoef,VirtualArmaFilter,missing-method

(filterCoef-methods), 24
filterCoef,VirtualBJFilter,character-method

(filterCoef-methods), 24

filterCoef,VirtualMonicFilterSpec,missing-method
(filterCoef-methods), 24

filterCoef,VirtualSPFilter,character-method
(filterCoef-methods), 24

filterCoef-methods, 24
filterOrder (filterCoef), 22
filterOrder,SarimaFilter-method

(filterOrder-methods), 26
filterOrder,VirtualArmaFilter-method

(filterOrder-methods), 26
filterOrder,VirtualMonicFilterSpec-method

(filterOrder-methods), 26
filterOrder-methods, 26
filterPoly, 28
filterPoly (filterCoef), 22
filterPoly,BJFilter-method

(filterPoly-methods), 27
filterPoly,SarimaFilter-method

(filterPoly-methods), 27
filterPoly,SPFilter-method

(filterPoly-methods), 27
filterPoly,VirtualArmaFilter-method

(filterPoly-methods), 27
filterPoly,VirtualMonicFilterSpec-method

(filterPoly-methods), 27
filterPoly-methods, 27
filterPolyCoef (filterCoef), 22
filterPolyCoef,BJFilter-method

(filterPolyCoef-methods), 28
filterPolyCoef,SarimaFilter-method

(filterPolyCoef-methods), 28
filterPolyCoef,SPFilter-method

(filterPolyCoef-methods), 28
filterPolyCoef,VirtualArmaFilter-method

(filterPolyCoef-methods), 28
filterPolyCoef,VirtualBJFilter-method

(filterPolyCoef-methods), 28
filterPolyCoef,VirtualSPFilter-method

(filterPolyCoef-methods), 28
filterPolyCoef-methods, 28
fun.forecast, 29

InterceptSpec-class, 31
isStationaryModel, 32
isStationaryModel,SarimaSpec-method

(isStationaryModel), 32
isStationaryModel,VirtualIntegratedModel-method

(isStationaryModel), 32

INDEX 67

isStationaryModel,VirtualStationaryModel-method
(isStationaryModel), 32

isStationaryModel-methods
(isStationaryModel), 32

makeARIMA, 16
MaModel, 12–14
MaModel (ArmaModel), 11
MaModel-class (ArmaModel-class), 13
modelCenter, 33
modelCenter,InterceptSpec-method

(modelCenter), 33
modelCenter-methods (modelCenter), 33
modelCoef, 23, 33, 38
modelCoef,ArmaModel,ArmaFilter,missing-method

(modelCoef-methods), 35
modelCoef,Autocorrelations,ComboAutocorrelations,missing-method

(modelCoef-methods), 35
modelCoef,Autocorrelations,PartialAutocorrelations,missing-method

(modelCoef-methods), 35
modelCoef,Autocovariances,Autocorrelations,missing-method

(modelCoef-methods), 35
modelCoef,Autocovariances,ComboAutocorrelations,missing-method

(modelCoef-methods), 35
modelCoef,Autocovariances,ComboAutocovariances,missing-method

(modelCoef-methods), 35
modelCoef,Autocovariances,PartialAutocorrelations,missing-method

(modelCoef-methods), 35
modelCoef,ComboAutocorrelations,Autocorrelations,missing-method

(modelCoef-methods), 35
modelCoef,ComboAutocorrelations,PartialAutocorrelations,missing-method

(modelCoef-methods), 35
modelCoef,ComboAutocovariances,Autocovariances,missing-method

(modelCoef-methods), 35
modelCoef,ComboAutocovariances,PartialAutocovariances,missing-method

(modelCoef-methods), 35
modelCoef,ComboAutocovariances,PartialVariances,missing-method

(modelCoef-methods), 35
modelCoef,ComboAutocovariances,VirtualAutocovariances,missing-method

(modelCoef-methods), 35
modelCoef,PartialAutocorrelations,Autocorrelations,missing-method

(modelCoef-methods), 35
modelCoef,PartialAutocovariances,PartialAutocorrelations,missing-method

(modelCoef-methods), 35
modelCoef,SarimaModel,ArFilter,missing-method

(modelCoef-methods), 35
modelCoef,SarimaModel,ArmaFilter,missing-method

(modelCoef-methods), 35

modelCoef,SarimaModel,ArModel,missing-method
(modelCoef-methods), 35

modelCoef,SarimaModel,MaFilter,missing-method
(modelCoef-methods), 35

modelCoef,SarimaModel,MaModel,missing-method
(modelCoef-methods), 35

modelCoef,SarimaModel,SarimaFilter,missing-method
(modelCoef-methods), 35

modelCoef,VirtualAutocovariances,Autocovariances,missing-method
(modelCoef-methods), 35

modelCoef,VirtualAutocovariances,character,missing-method
(modelCoef-methods), 35

modelCoef,VirtualAutocovariances,missing,missing-method
(modelCoef-methods), 35

modelCoef,VirtualAutocovariances,VirtualAutocovariances,missing-method
(modelCoef-methods), 35

modelCoef,VirtualFilterModel,BD,missing-method
(modelCoef-methods), 35

modelCoef,VirtualFilterModel,BJ,missing-method
(modelCoef-methods), 35

modelCoef,VirtualFilterModel,character,missing-method
(modelCoef-methods), 35

modelCoef,VirtualFilterModel,missing,missing-method
(modelCoef-methods), 35

modelCoef,VirtualFilterModel,SP,missing-method
(modelCoef-methods), 35

modelCoef-methods, 35
modelIntercept, 37
modelIntercept,InterceptSpec-method

(modelIntercept), 37
modelIntercept-methods

(modelIntercept), 37
modelOrder, 23, 34, 37
modelOrder,ArmaModel,ArFilter-method

(modelOrder-methods), 39
modelOrder,ArmaModel,MaFilter-method

(modelOrder-methods), 39
modelOrder,SarimaModel,ArFilter-method

(modelOrder-methods), 39
modelOrder,SarimaModel,ArmaFilter-method

(modelOrder-methods), 39
modelOrder,SarimaModel,ArmaModel-method

(modelOrder-methods), 39
modelOrder,SarimaModel,ArModel-method

(modelOrder-methods), 39
modelOrder,SarimaModel,MaFilter-method

(modelOrder-methods), 39
modelOrder,SarimaModel,MaModel-method

68 INDEX

(modelOrder-methods), 39
modelOrder,VirtualFilterModel,character-method

(modelOrder-methods), 39
modelOrder,VirtualFilterModel,missing-method

(modelOrder-methods), 39
modelOrder-methods, 39
modelPoly, 23, 34
modelPoly (modelOrder), 37
modelPoly,SarimaModel,ArmaFilter-method

(modelPoly-methods), 39
modelPoly,VirtualFilterModel,character-method

(modelPoly-methods), 39
modelPoly,VirtualMonicFilter,missing-method

(modelPoly-methods), 39
modelPoly-methods, 39
modelPolyCoef, 23, 34
modelPolyCoef (modelOrder), 37
modelPolyCoef,SarimaModel,ArmaFilter-method

(modelPolyCoef-methods), 40
modelPolyCoef,VirtualFilterModel,character-method

(modelPolyCoef-methods), 40
modelPolyCoef,VirtualMonicFilter,missing-method

(modelPolyCoef-methods), 40
modelPolyCoef-methods, 40

nSeasons, 40
nSeasons,SarimaFilter-method

(nSeasons), 40
nSeasons,VirtualArmaFilter-method

(nSeasons), 40
nSeasons-methods (nSeasons), 40
nUnitRoots, 32, 41
nUnitRoots,SarimaSpec-method

(nUnitRoots), 41
nUnitRoots,VirtualStationaryModel-method

(nUnitRoots), 41
nUnitRoots-methods (nUnitRoots), 41
nvarOfAcfKP, 5, 42
nvcovOfAcf, 43
nvcovOfAcfBD (nvcovOfAcf), 43

partialAutocorrelations
(autocorrelations), 17

partialAutocorrelations,ANY,ANY,ANY-method
(partialAutocorrelations-methods),
44

partialAutocorrelations,mts,ANY,missing-method
(partialAutocorrelations-methods),
44

partialAutocorrelations,PartialAutocovariances,ANY,missing-method
(partialAutocorrelations-methods),
44

partialAutocorrelations,ts,ANY,missing-method
(partialAutocorrelations-methods),
44

partialAutocorrelations-methods, 44
partialAutocovariances

(autocorrelations), 17
partialCoefficients (autocorrelations),

17
partialVariances (autocorrelations), 17
periodogram, 45
plot,SampleAutocorrelations,matrix-method

(plot-methods), 46
plot,SampleAutocorrelations,missing-method

(plot-methods), 46
plot,SamplePartialAutocorrelations,missing-method

(plot-methods), 46
plot-methods, 46
prepareSimSarima, 47, 57
print.simSarimaFun (prepareSimSarima),

47

sarima, 48
sarima-package, 3
SarimaFilter, 53
SarimaModel, 31
SarimaModel-class, 53
SarimaSpec, 53
setAs (coerce-methods), 20
sigmaSq, 55
sigmaSq,InterceptSpec-method (sigmaSq),

55
sigmaSq-methods (sigmaSq), 55
sim_sarima, 48, 56
summary.SarimaFilter

(summary.SarimaModel), 58
summary.SarimaModel, 58
summary.SarimaSpec

(summary.SarimaModel), 58

VirtualArmaFilter, 13
VirtualArmaModel, 13
VirtualAutocovarianceModel, 13
VirtualCascadeFilter, 53
VirtualFilterModel, 13, 53
VirtualMeanModel, 13
VirtualMonicFilter, 13, 53

INDEX 69

VirtualSarimaFilter, 53
VirtualStationaryModel, 13

whiteNoiseTest, 6, 8, 9, 42, 44, 59

xarmaFilter, 61

	sarima-package
	acfGarchTest
	acfIidTest
	acfMaTest
	armaccf_xe
	ArmaModel
	ArmaModel-class
	arma_Q0Gardner
	arma_Q0gnb
	autocorrelations
	autocorrelations-methods
	autocovariances-methods
	coerce-methods
	filterCoef
	filterCoef-methods
	filterOrder-methods
	filterPoly-methods
	filterPolyCoef-methods
	fun.forecast
	InterceptSpec-class
	isStationaryModel
	modelCenter
	modelCoef
	modelCoef-methods
	modelIntercept
	modelOrder
	modelOrder-methods
	modelPoly-methods
	modelPolyCoef-methods
	nSeasons
	nUnitRoots
	nvarOfAcfKP
	nvcovOfAcf
	partialAutocorrelations-methods
	periodogram
	plot-methods
	prepareSimSarima
	sarima
	SarimaModel-class
	sigmaSq
	sim_sarima
	summary.SarimaModel
	whiteNoiseTest
	xarmaFilter
	Index

