
Package ‘tibble’
October 12, 2020

Title Simple Data Frames

Version 3.0.4

Description Provides a 'tbl_df' class (the 'tibble') that
provides stricter checking and better formatting than the traditional
data frame.

License MIT + file LICENSE

URL https://tibble.tidyverse.org/, https://github.com/tidyverse/tibble

BugReports https://github.com/tidyverse/tibble/issues

Depends R (>= 3.1.0)

Imports cli, crayon (>= 1.3.4), ellipsis (>= 0.2.0), fansi (>= 0.4.0),
lifecycle (>= 0.2.0), magrittr, methods, pillar (>= 1.4.3),
pkgconfig, rlang (>= 0.4.3), utils, vctrs (>= 0.3.2)

Suggests bench, bit64, blob, covr, dplyr, evaluate, formattable, hms,
htmltools, import, knitr, lubridate, mockr, nycflights13,
purrr, rmarkdown, testthat (>= 2.1.0), tidyr, withr

VignetteBuilder knitr

Encoding UTF-8

LazyData yes

RoxygenNote 7.1.1.9000

NeedsCompilation yes

Author Kirill Müller [aut, cre],
Hadley Wickham [aut],
Romain Francois [ctb],
Jennifer Bryan [ctb],
RStudio [cph]

Maintainer Kirill Müller <krlmlr+r@mailbox.org>

Repository CRAN

Date/Publication 2020-10-12 11:20:03 UTC

1

https://tibble.tidyverse.org/
https://github.com/tidyverse/tibble
https://github.com/tidyverse/tibble/issues

2 tibble-package

R topics documented:
tibble-package . 2
add_column . 4
add_row . 5
as_tibble . 6
enframe . 9
formatting . 10
frame_matrix . 12
glimpse . 13
is_tibble . 14
lst . 14
new_tibble . 15
rownames . 16
subsetting . 18
tbl_df-class . 20
tbl_sum . 21
tibble . 21
tribble . 25
view . 26

Index 27

tibble-package tibble: Simple Data Frames

Description

Provides a ’tbl_df’ class (the ’tibble’) that provides stricter checking and better formatting than the
traditional data frame.

Details

Stable
The tibble package provides utilities for handling tibbles, where "tibble" is a colloquial term for the
S3 tbl_df class. The tbl_df class is a special case of the base data.frame. class, developed in
response to lessons learned over many years of data analysis with data frames.

Tibble is the central data structure for the set of packages known as the tidyverse, including dplyr,
ggplot2, tidyr, and readr.

General resources:

• Website for the tibble package: https://tibble.tidyverse.org
• Tibbles chapter in R for Data Science

Resources on specific topics:

• Create a tibble: tibble(), as_tibble(), tribble(), enframe()
• Inspect a tibble: print.tbl(), glimpse()
• Details on the S3 tbl_df class: tbl_df

https://www.tidyverse.org/packages/
https://dplyr.tidyverse.org/
https://ggplot2.tidyverse.org/
https://tidyr.tidyverse.org/
https://readr.tidyverse.org/
https://tibble.tidyverse.org
https://r4ds.had.co.nz/tibbles.html

tibble-package 3

Package options

The following option is used for viewing tabular data with view():

• tibble.view_max: Maximum number of rows shown if the input is not a data frame. Default:
1000.

The following options are used by the tibble and pillar packages to format and print tbl_df objects.
Used by the formatting workhorse trunc_mat() and, therefore, indirectly, by print.tbl().

• tibble.print_max: Row number threshold: Maximum number of rows printed. Set to Inf
to always print all rows. Default: 20.

• tibble.print_min: Number of rows printed if row number threshold is exceeded. Default:
10.

• tibble.width: Output width. Default: NULL (use width option).

• tibble.max_extra_cols: Number of extra columns printed in reduced form. Default: 100.

• pillar.bold: Use bold font, e.g. for column headers? This currently defaults to FALSE,
because many terminal fonts have poor support for bold fonts.

• pillar.subtle: Use subtle style, e.g. for row numbers and data types? Default: TRUE.

• pillar.subtle_num: Use subtle style for insignificant digits? Default: FALSE, is also affected
by the pillar.subtle option.

• pillar.neg: Highlight negative numbers? Default: TRUE.

• pillar.sigfig: The number of significant digits that will be printed and highlighted, default:
3. Set the pillar.subtle option to FALSE to turn off highlighting of significant digits.

• pillar.min_title_chars: The minimum number of characters for the column title, default:
15. Column titles may be truncated up to that width to save horizontal space. Set to Inf to
turn off truncation of column titles.

• pillar.min_chars: The minimum number of characters wide to display character columns,
default: 0. Character columns may be truncated up to that width to save horizontal space. Set
to Inf to turn off truncation of character columns.

Author(s)

Maintainer: Kirill Müller <krlmlr+r@mailbox.org>

Authors:

• Hadley Wickham <hadley@rstudio.com>

Other contributors:

• Romain Francois <romain@r-enthusiasts.com> [contributor]

• Jennifer Bryan <jenny@rstudio.com> [contributor]

• RStudio [copyright holder]

4 add_column

See Also

Useful links:

• https://tibble.tidyverse.org/

• https://github.com/tidyverse/tibble

• Report bugs at https://github.com/tidyverse/tibble/issues

add_column Add columns to a data frame

Description

This is a convenient way to add one or more columns to an existing data frame.

Usage

add_column(
.data,
...,
.before = NULL,
.after = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal")

)

Arguments

.data Data frame to append to.

... <dynamic-dots> Name-value pairs, passed on to tibble(). All values must
have the same size of .data or size 1.

.before, .after

One-based column index or column name where to add the new columns, de-
fault: after last column.

.name_repair Treatment of problematic column names:

• "minimal": No name repair or checks, beyond basic existence,
• "unique": Make sure names are unique and not empty,
• "check_unique": (default value), no name repair, but check they are unique,
• "universal": Make the names unique and syntactic
• a function: apply custom name repair (e.g., .name_repair = make.names

for names in the style of base R).
• A purrr-style anonymous function, see rlang::as_function()

This argument is passed on as repair to vctrs::vec_as_names(). See there
for more details on these terms and the strategies used to enforce them.

https://tibble.tidyverse.org/
https://github.com/tidyverse/tibble
https://github.com/tidyverse/tibble/issues

add_row 5

See Also

Other addition: add_row()

Examples

add_column ---------------------------------
df <- tibble(x = 1:3, y = 3:1)

df %>% add_column(z = -1:1, w = 0)
df %>% add_column(z = -1:1, .before = "y")

You can't overwrite existing columns
try(df %>% add_column(x = 4:6))

You can't create new observations
try(df %>% add_column(z = 1:5))

add_row Add rows to a data frame

Description

This is a convenient way to add one or more rows of data to an existing data frame. See tribble()
for an easy way to create an complete data frame row-by-row. Use tibble_row() to ensure that
the new data has only one row.

add_case() is an alias of add_row().

Usage

add_row(.data, ..., .before = NULL, .after = NULL)

Arguments

.data Data frame to append to.

... <dynamic-dots> Name-value pairs, passed on to tibble(). Values can be
defined only for columns that already exist in .data and unset columns will get
an NA value.

.before, .after

One-based row index where to add the new rows, default: after last row.

See Also

Other addition: add_column()

6 as_tibble

Examples

add_row ---------------------------------
df <- tibble(x = 1:3, y = 3:1)

df %>% add_row(x = 4, y = 0)

You can specify where to add the new rows
df %>% add_row(x = 4, y = 0, .before = 2)

You can supply vectors, to add multiple rows (this isn't
recommended because it's a bit hard to read)
df %>% add_row(x = 4:5, y = 0:-1)

Use tibble_row() to add one row only
df %>% add_row(tibble_row(x = 4, y = 0))
try(df %>% add_row(tibble_row(x = 4:5, y = 0:-1)))

Absent variables get missing values
df %>% add_row(x = 4)

You can't create new variables
try(df %>% add_row(z = 10))

as_tibble Coerce lists, matrices, and more to data frames

Description

Maturing

as_tibble() turns an existing object, such as a data frame or matrix, into a so-called tibble, a data
frame with class tbl_df. This is in contrast with tibble(), which builds a tibble from individual
columns. as_tibble() is to tibble() as base::as.data.frame() is to base::data.frame().

as_tibble() is an S3 generic, with methods for:

• data.frame: Thin wrapper around the list method that implements tibble’s treatment of
rownames.

• matrix, poly, ts, table

• Default: Other inputs are first coerced with base::as.data.frame().

as_tibble_row() converts a vector to a tibble with one row. The input must be a bare vector, e.g.
vectors of dates are not supported yet. If the input is a list, all elements must have length one.

as_tibble_col() converts a vector to a tibble with one column.

as_tibble 7

Usage

as_tibble(
x,
...,
.rows = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal"),
rownames = pkgconfig::get_config("tibble::rownames", NULL)

)

S3 method for class 'data.frame'
as_tibble(
x,
validate = NULL,
...,
.rows = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal"),
rownames = pkgconfig::get_config("tibble::rownames", NULL)

)

S3 method for class 'list'
as_tibble(
x,
validate = NULL,
...,
.rows = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal")

)

S3 method for class 'matrix'
as_tibble(x, ..., validate = NULL, .name_repair = NULL)

S3 method for class 'table'
as_tibble(x, `_n` = "n", ..., n = `_n`, .name_repair = "check_unique")

S3 method for class '`NULL`'
as_tibble(x, ...)

Default S3 method:
as_tibble(x, ...)

as_tibble_row(
x,
.name_repair = c("check_unique", "unique", "universal", "minimal")

)

as_tibble_col(x, column_name = "value")

8 as_tibble

Arguments

x A data frame, list, matrix, or other object that could reasonably be coerced to a
tibble.

... Unused, for extensibility.

.rows The number of rows, useful to create a 0-column tibble or just as an additional
check.

.name_repair Treatment of problematic column names:

• "minimal": No name repair or checks, beyond basic existence,
• "unique": Make sure names are unique and not empty,
• "check_unique": (default value), no name repair, but check they are unique,
• "universal": Make the names unique and syntactic
• a function: apply custom name repair (e.g., .name_repair = make.names

for names in the style of base R).
• A purrr-style anonymous function, see rlang::as_function()

This argument is passed on as repair to vctrs::vec_as_names(). See there
for more details on these terms and the strategies used to enforce them.

rownames How to treat existing row names of a data frame or matrix:

• NULL: remove row names. This is the default.
• NA: keep row names.
• A string: the name of a new column. Existing rownames are transferred

into this column and the row.names attribute is deleted. Read more in
rownames.

_n, validate Soft-deprecated
For compatibility only, do not use for new code.

n Name for count column, default: "n".

column_name Name of the column.

Row names

The default behavior is to silently remove row names.

New code should explicitly convert row names to a new column using the rownames argument.

For existing code that relies on the retention of row names, call pkgconfig::set_config("tibble::rownames"
= NA) in your script or in your package’s .onLoad() function.

Life cycle

Using as_tibble() for vectors is superseded as of version 3.0.0, prefer the more expressive ma-
turing as_tibble_row() and as_tibble_col() variants for new code.

See Also

tibble() constructs a tibble from individual columns. enframe() converts a named vector to a tib-
ble with a column of names and column of values. Name repair is implemented using vctrs::vec_as_names().

enframe 9

Examples

m <- matrix(rnorm(50), ncol = 5)
colnames(m) <- c("a", "b", "c", "d", "e")
df <- as_tibble(m)

as_tibble_row(c(a = 1, b = 2))
as_tibble_row(list(c = "three", d = list(4:5)))
as_tibble_row(1:3, .name_repair = "unique")

as_tibble_col(1:3)
as_tibble_col(

list(c = "three", d = list(4:5)),
column_name = "data"

)

enframe Converting vectors to data frames, and vice versa

Description

Maturing

enframe() converts named atomic vectors or lists to one- or two-column data frames. For a list,
the result will be a nested tibble with a column of type list. For unnamed vectors, the natural
sequence is used as name column.

deframe() converts two-column data frames to a named vector or list, using the first column as
name and the second column as value. If the input has only one column, an unnamed vector is
returned.

Usage

enframe(x, name = "name", value = "value")

deframe(x)

Arguments

x An atomic vector (for enframe()) or a data frame with one or two columns (for
deframe()).

name, value Names of the columns that store the names and values. If name is NULL, a one-
column tibble is returned; value cannot be NULL.

Value

A tibble with two columns (if name is not NULL, the default) or one column (otherwise).

10 formatting

Examples

enframe(1:3)
enframe(c(a = 5, b = 7))
enframe(list(one = 1, two = 2:3, three = 4:6))
deframe(enframe(3:1))
deframe(tibble(a = 1:3))
deframe(tibble(a = as.list(1:3)))

formatting Printing tibbles

Description

Maturing
One of the main features of the tbl_df class is the printing:

• Tibbles only print as many rows and columns as fit on one screen, supplemented by a summary
of the remaining rows and columns.

• Tibble reveals the type of each column, which keeps the user informed about whether a vari-
able is, e.g., <chr> or <fct> (character versus factor).

Printing can be tweaked for a one-off call by calling print() explicitly and setting arguments like
n and width. More persistent control is available by setting the options described below.

Usage

S3 method for class 'tbl_df'
print(x, ..., n = NULL, width = NULL, n_extra = NULL)

S3 method for class 'tbl_df'
format(x, ..., n = NULL, width = NULL, n_extra = NULL)

trunc_mat(x, n = NULL, width = NULL, n_extra = NULL)

Arguments

x Object to format or print.

... Other arguments passed on to individual methods.

n Number of rows to show. If NULL, the default, will print all rows if less than
option tibble.print_max. Otherwise, will print tibble.print_min rows.

width Width of text output to generate. This defaults to NULL, which means use getOption("tibble.width")
or (if also NULL) getOption("width"); the latter displays only the columns that
fit on one screen. You can also set options(tibble.width = Inf) to override
this default and always print all columns.

n_extra Number of extra columns to print abbreviated information for, if the width is too
small for the entire tibble. If NULL, the default, will print information about at
most tibble.max_extra_cols extra columns.

formatting 11

Package options

The following options are used by the tibble and pillar packages to format and print tbl_df objects.
Used by the formatting workhorse trunc_mat() and, therefore, indirectly, by print.tbl().

• tibble.print_max: Row number threshold: Maximum number of rows printed. Set to Inf
to always print all rows. Default: 20.

• tibble.print_min: Number of rows printed if row number threshold is exceeded. Default:
10.

• tibble.width: Output width. Default: NULL (use width option).

• tibble.max_extra_cols: Number of extra columns printed in reduced form. Default: 100.

• pillar.bold: Use bold font, e.g. for column headers? This currently defaults to FALSE,
because many terminal fonts have poor support for bold fonts.

• pillar.subtle: Use subtle style, e.g. for row numbers and data types? Default: TRUE.

• pillar.subtle_num: Use subtle style for insignificant digits? Default: FALSE, is also affected
by the pillar.subtle option.

• pillar.neg: Highlight negative numbers? Default: TRUE.

• pillar.sigfig: The number of significant digits that will be printed and highlighted, default:
3. Set the pillar.subtle option to FALSE to turn off highlighting of significant digits.

• pillar.min_title_chars: The minimum number of characters for the column title, default:
15. Column titles may be truncated up to that width to save horizontal space. Set to Inf to
turn off truncation of column titles.

• pillar.min_chars: The minimum number of characters wide to display character columns,
default: 0. Character columns may be truncated up to that width to save horizontal space. Set
to Inf to turn off truncation of character columns.

Examples

print(as_tibble(mtcars))
print(as_tibble(mtcars), n = 1)
print(as_tibble(mtcars), n = 3)

print(as_tibble(iris), n = 100)

print(mtcars, width = 10)

mtcars2 <- as_tibble(cbind(mtcars, mtcars), .name_repair = "unique")
print(mtcars2, n = 25, n_extra = 3)

trunc_mat(mtcars)

print(nycflights13::flights, n_extra = 2)
print(nycflights13::flights, width = Inf)

12 frame_matrix

frame_matrix Row-wise matrix creation

Description

Maturing

Create matrices laying out the data in rows, similar to matrix(...,byrow = TRUE), with a nicer-
to-read syntax. This is useful for small matrices, e.g. covariance matrices, where readability is
important. The syntax is inspired by tribble().

Usage

frame_matrix(...)

Arguments

... <dynamic-dots> Arguments specifying the structure of a frame_matrix. Col-
umn names should be formulas, and may only appear before the data. These
arguments are processed with rlang::list2() and support unquote via !! and
unquote-splice via !!!.

Value

A matrix.

See Also

See quasiquotation for more details on tidy dots semantics, i.e. exactly how the ... argument is
processed.

Examples

frame_matrix(
~col1, ~col2,
1, 3,
5, 2

)

glimpse 13

glimpse Get a glimpse of your data

Description

Maturing

glimpse() is like a transposed version of print(): columns run down the page, and data runs
across. This makes it possible to see every column in a data frame. It’s a little like str() applied to
a data frame but it tries to show you as much data as possible. (And it always shows the underlying
data, even when applied to a remote data source.)

This generic will be moved to pillar, and reexported from there as soon as it becomes available.

Usage

glimpse(x, width = NULL, ...)

Arguments

x An object to glimpse at.

width Width of output: defaults to the setting of the option tibble.width (if finite) or
the width of the console.

... Unused, for extensibility.

Value

x original x is (invisibly) returned, allowing glimpse() to be used within a data pipe line.

S3 methods

glimpse is an S3 generic with a customised method for tbls and data.frames, and a default
method that calls str().

Examples

glimpse(mtcars)

glimpse(nycflights13::flights)

14 lst

is_tibble Test if the object is a tibble

Description

This function returns TRUE for tibbles or subclasses thereof, and FALSE for all other objects, includ-
ing regular data frames.

Usage

is_tibble(x)

Arguments

x An object

Value

TRUE if the object inherits from the tbl_df class.

lst Build a list

Description

Questioning
lst() constructs a list, similar to base::list(), but with some of the same features as tibble().
lst() builds components sequentially. When defining a component, you can refer to components
created earlier in the call. lst() also generates missing names automatically.

Usage

lst(...)

Arguments

... <dynamic-dots> A set of name-value pairs. These arguments are processed
with rlang::quos() and support unquote via !! and unquote-splice via !!!.
Use := to create columns that start with a dot.
Arguments are evaluated sequentially. You can refer to previously created ele-
ments directly or using the .data pronoun. An existing .data pronoun, provided
e.g. inside dplyr::mutate(), is not available.

Value

A named list.

new_tibble 15

Life cycle

The lst() function is in the questioning stage. It is essentially rlang::list2(), but with a couple
features copied from tibble(). It’s not clear that a function for creating lists belongs in the tibble
package. Consider using rlang::list2() instead.

Examples

the value of n can be used immediately in the definition of x
lst(n = 5, x = runif(n))

missing names are constructed from user's input
lst(1:3, z = letters[4:6], runif(3))

a <- 1:3
b <- letters[4:6]
lst(a, b)

pre-formed quoted expressions can be used with lst() and then
unquoted (with !!) or unquoted and spliced (with !!!)
n1 <- 2
n2 <- 3
n_stuff <- quote(n1 + n2)
x_stuff <- quote(seq_len(n))
lst(!!!list(n = n_stuff, x = x_stuff))
lst(n = !!n_stuff, x = !!x_stuff)
lst(n = 4, x = !!x_stuff)
lst(!!!list(n = 2, x = x_stuff))

new_tibble Tibble constructor and validator

Description

Maturing

Creates or validates a subclass of a tibble. These function is mostly useful for package authors that
implement subclasses of a tibble, like sf or tsibble.

new_tibble() creates a new object as a subclass of tbl_df, tbl and data.frame. This function
is optimized for performance, checks are reduced to a minimum.

validate_tibble() checks a tibble for internal consistency. Correct behavior can be guaranteed
only if this function runs without raising an error.

Usage

new_tibble(x, ..., nrow, class = NULL, subclass = NULL)

validate_tibble(x)

https://www.tidyverse.org/lifecycle/#questioning

16 rownames

Arguments

x A tibble-like object.

... Name-value pairs of additional attributes.

nrow The number of rows, required.

class Subclasses to assign to the new object, default: none.

subclass Deprecated, retained for compatibility. Please use the class argument.

Construction

For new_tibble(), x must be a list. The ... argument allows adding more attributes to the sub-
class. An nrow argument is required. This should be an integer of length 1, and every element
of the list x should have vctrs::vec_size() equal to this value. (But this is not checked by the
constructor). This takes the place of the "row.names" attribute in a data frame. x must have names
(or be empty), but the names are not checked for correctness.

Validation

validate_tibble() checks for "minimal" names and that all columns are vectors, data frames or
matrices. It also makes sure that all columns have the same length, and that vctrs::vec_size() is
consistent with the data.

See Also

tibble() and as_tibble() for ways to construct a tibble with recycling of scalars and automatic
name repair.

Examples

The nrow argument is always required:
new_tibble(list(a = 1:3, b = 4:6), nrow = 3)

Existing row.names attributes are ignored:
try(new_tibble(iris, nrow = 3))

The length of all columns must be compatible with the nrow argument:
try(new_tibble(list(a = 1:3, b = 4:6), nrow = 2))

rownames Tools for working with row names

rownames 17

Description

While a tibble can have row names (e.g., when converting from a regular data frame), they are
removed when subsetting with the [operator. A warning will be raised when attempting to assign
non-NULL row names to a tibble. Generally, it is best to avoid row names, because they are basically
a character column with different semantics than every other column.

These functions allow to you detect if a data frame has row names (has_rownames()), remove them
(remove_rownames()), or convert them back-and-forth between an explicit column (rownames_to_column()
and column_to_rownames()). Also included is rowid_to_column(), which adds a column at the
start of the dataframe of ascending sequential row ids starting at 1. Note that this will remove any
existing row names.

Usage

has_rownames(.data)

remove_rownames(.data)

rownames_to_column(.data, var = "rowname")

rowid_to_column(.data, var = "rowid")

column_to_rownames(.data, var = "rowname")

Arguments

.data A data frame.
var Name of column to use for rownames.

Value

column_to_rownames() always returns a data frame. has_rownames() returns a scalar logical. All
other functions return an object of the same class as the input.

Examples

Detect row names --
has_rownames(mtcars)
has_rownames(iris)

Remove row names --
remove_rownames(mtcars) %>% has_rownames()

Convert between row names and column --------------------------------
mtcars_tbl <- rownames_to_column(mtcars, var = "car") %>% as_tibble()
mtcars_tbl
column_to_rownames(mtcars_tbl, var = "car") %>% head()

Adding rowid as a column --
rowid_to_column(iris) %>% head()

18 subsetting

subsetting Subsetting tibbles

Description

Accessing columns, rows, or cells via $, [[, or [is mostly similar to regular data frames. However,
the behavior is different for tibbles and data frames in some cases:

• [always returns a tibble by default, even if only one column is accessed.

• Partial matching of column names with $ and [[is not supported, a warning is given and NULL
is returned.

• Only scalars (vectors of length one) or vectors with the same length as the number of rows can
be used for assignment.

• Rows outside of the tibble’s boundaries cannot be accessed.

• When updating with [[<- and [<-, type changes of entire columns are supported, but updating a
part of a column requires that the new value is coercible to the existing type. See vec_slice()
for the underlying implementation.

Unstable return type and implicit partial matching can lead to surprises and bugs that are hard to
catch. If you rely on code that requires the original data frame behavior, coerce to a data frame via
as.data.frame().

Usage

S3 method for class 'tbl_df'
x$name

S3 replacement method for class 'tbl_df'
x$name <- value

S3 method for class 'tbl_df'
x[[i, j, ..., exact = TRUE]]

S3 replacement method for class 'tbl_df'
x[[i, j, ...]] <- value

S3 method for class 'tbl_df'
x[i, j, drop = FALSE, ...]

S3 replacement method for class 'tbl_df'
x[i, j, ...] <- value

Arguments

x A tibble.

name A name or a string.

subsetting 19

value A value to store in a row, column, range or cell. Tibbles are stricter than data
frames in what is accepted here.

i, j Row and column indices. If j is omitted, i is used as column index.

... Ignored.

exact Ignored, with a warning.

drop Coerce to a vector if fetching one column via tbl[,j] . Default FALSE, ignored
when accessing a column via tbl[j] .

Details

For better compatibility with older code written for regular data frames, [supports a drop argument
which defaults to FALSE. New code should use [[to turn a column into a vector.

Examples

df <- data.frame(a = 1:3, bc = 4:6)
tbl <- tibble(a = 1:3, bc = 4:6)

Subsetting single columns:
df[, "a"]
tbl[, "a"]
tbl[, "a", drop = TRUE]
as.data.frame(tbl)[, "a"]

Subsetting single rows with the drop argument:
df[1, , drop = TRUE]
tbl[1, , drop = TRUE]
as.list(tbl[1,])

Accessing non-existent columns:
df$b
tbl$b

df[["b", exact = FALSE]]
tbl[["b", exact = FALSE]]

df$bd <- c("n", "e", "w")
tbl$bd <- c("n", "e", "w")
df$b
tbl$b

df$b <- 7:9
tbl$b <- 7:9
df$b
tbl$b

Identical behavior:
tbl[1,]
tbl[1, c("bc", "a")]
tbl[, c("bc", "a")]
tbl[c("bc", "a")]

20 tbl_df-class

tbl["a"]
tbl$a
tbl[["a"]]

tbl_df-class tbl_df class

Description

The tbl_df class is a subclass of data.frame, created in order to have different default behaviour.
The colloquial term "tibble" refers to a data frame that has the tbl_df class. Tibble is the central
data structure for the set of packages known as the tidyverse, including dplyr, ggplot2, tidyr, and
readr.

The general ethos is that tibbles are lazy and surly: they do less and complain more than base
data.frames. This forces problems to be tackled earlier and more explicitly, typically leading to
code that is more expressive and robust.

Properties of tbl_df

Objects of class tbl_df have:

• A class attribute of c("tbl_df","tbl","data.frame").

• A base type of "list", where each element of the list has the same vctrs::vec_size().

• A names attribute that is a character vector the same length as the underlying list.

• A row.names attribute, included for compatibility with data.frame. This attribute is only
consulted to query the number of rows, any row names that might be stored there are ignored
by most tibble methods.

Behavior of tbl_df

How default behaviour of tibbles differs from that of data.frames, during creation and access:

• Column data is not coerced. A character vector is not turned into a factor. List-columns are
expressly anticipated and do not require special tricks. Read more in tibble().

• Recycling only happens for a length 1 input. Read more in vctrs::vec_recycle().

• Column names are not munged, although missing names are auto-populated. Empty and du-
plicated column names are strongly discouraged, but the user must indicate how to resolve.
Read more in vctrs::vec_as_names().

• Row names are not added and are strongly discouraged, in favor of storing that info as a
column. Read about in rownames.

• df[,j] returns a tibble; it does not automatically extract the column inside. df[,j,drop =
FALSE] is the default. Read more in subsetting.

• There is no partial matching when $ is used to index by name. df$name for a nonexistent
name generates a warning. Read more in subsetting.

• Printing and inspection are a very high priority. The goal is to convey as much information as
possible, in a concise way, even for large and complex tibbles. Read more in formatting.

https://www.tidyverse.org/packages/
https://dplyr.tidyverse.org/
https://ggplot2.tidyverse.org/
https://tidyr.tidyverse.org/
https://readr.tidyverse.org/

tbl_sum 21

See Also

tibble(), as_tibble(), tribble(), print.tbl(), glimpse()

tbl_sum Provide a succinct summary of an object

Description

tbl_sum() gives a brief textual description of a table-like object, which should include the dimen-
sions and the data source in the first element, and additional information in the other elements (such
as grouping for dplyr). The default implementation forwards to pillar::obj_sum().

Usage

tbl_sum(x)

Arguments

x Object to summarise.

Details

This generic will be moved to pillar, and reexported from there as soon as it becomes available.

Value

A named character vector, describing the dimensions in the first element and the data source in the
name of the first element.

See Also

pillar::type_sum()

tibble Build a data frame

22 tibble

Description

tibble() constructs a data frame. It is used like base::data.frame(), but with a couple notable
differences:

• The returned data frame has the class tbl_df, in addition to data.frame. This allows so-
called "tibbles" to exhibit some special behaviour, such as enhanced printing. Tibbles are
fully described in tbl_df.

• tibble() is much lazier than base::data.frame() in terms of transforming the user’s input.
Character vectors are not coerced to factor. List-columns are expressly anticipated and do not
require special tricks. Column names are not modified.

• tibble() builds columns sequentially. When defining a column, you can refer to columns
created earlier in the call. Only columns of length one are recycled.

• If a column evaluates to a data frame or tibble, it is nested or spliced. See examples.

tibble_row() constructs a data frame that is guaranteed to occupy one row. Vector columns are
required to have size one, non-vector columns are wrapped in a list.

Usage

tibble(
...,
.rows = NULL,
.name_repair = c("check_unique", "unique", "universal", "minimal")

)

tibble_row(
...,
.name_repair = c("check_unique", "unique", "universal", "minimal")

)

Arguments

... <dynamic-dots> A set of name-value pairs. These arguments are processed
with rlang::quos() and support unquote via !! and unquote-splice via !!!.
Use := to create columns that start with a dot.
Arguments are evaluated sequentially. You can refer to previously created ele-
ments directly or using the .data pronoun. An existing .data pronoun, provided
e.g. inside dplyr::mutate(), is not available.

.rows The number of rows, useful to create a 0-column tibble or just as an additional
check.

.name_repair Treatment of problematic column names:

• "minimal": No name repair or checks, beyond basic existence,
• "unique": Make sure names are unique and not empty,
• "check_unique": (default value), no name repair, but check they are unique,
• "universal": Make the names unique and syntactic
• a function: apply custom name repair (e.g., .name_repair = make.names

for names in the style of base R).

tibble 23

• A purrr-style anonymous function, see rlang::as_function()

This argument is passed on as repair to vctrs::vec_as_names(). See there
for more details on these terms and the strategies used to enforce them.

Value

A tibble, which is a colloquial term for an object of class tbl_df. A tbl_df object is also a data
frame, i.e. it has class data.frame.

See Also

Use as_tibble() to turn an existing object into a tibble. Use enframe() to convert a named vector
into a tibble. Name repair is detailed in vctrs::vec_as_names(). See quasiquotation for more
details on tidy dots semantics, i.e. exactly how the ... argument is processed.

Examples

Unnamed arguments are named with their expression:
a <- 1:5
tibble(a, a * 2)

Scalars (vectors of length one) are recycled:
tibble(a, b = a * 2, c = 1)

Columns are available in subsequent expressions:
tibble(x = runif(10), y = x * 2)

tibble() never coerces its inputs,
str(tibble(letters))
str(tibble(x = list(diag(1), diag(2))))

or munges column names (unless requested),
tibble(`a + b` = 1:5)

but it forces you to take charge of names, if they need repair:
try(tibble(x = 1, x = 2))
tibble(x = 1, x = 2, .name_repair = "unique")
tibble(x = 1, x = 2, .name_repair = "minimal")

By default, non-syntactic names are allowed,
df <- tibble(`a 1` = 1, `a 2` = 2)
because you can still index by name:
df[["a 1"]]
df$`a 1`
with(df, `a 1`)

Syntactic names are easier to work with, though, and you can request them:
df <- tibble(`a 1` = 1, `a 2` = 2, .name_repair = "universal")
df$a.1

You can specify your own name repair function:
tibble(x = 1, x = 2, .name_repair = make.unique)

24 tibble

fix_names <- function(x) gsub("\\s+", "_", x)
tibble(`year 1` = 1, `year 2` = 2, .name_repair = fix_names)

purrr-style anonymous functions and constants
are also supported
tibble(x = 1, x = 2, .name_repair = ~ make.names(., unique = TRUE))

tibble(x = 1, x = 2, .name_repair = ~ c("a", "b"))

Tibbles can contain columns that are tibbles or matrices
if the number of rows is compatible. Unnamed tibbled are
spliced, i.e. the inner columns are inserted into the
tibble under construction.
tibble(

a = 1:3,
tibble(
b = 4:6,
c = 7:9

),
d = tibble(

e = tibble(
f = b

)
)

)
tibble(

a = 1:4,
b = diag(4),
c = cov(iris[1:4])

)

data can not contain POSIXlt columns, or tibbles or matrices
with incompatible number of rows:
try(tibble(y = strptime("2000/01/01", "%x")))
try(tibble(a = 1:3, b = tibble(c = 4:7)))

Use := to create columns with names that start with a dot:
tibble(.dotted = 3)
tibble(.dotted := 3)

You can unquote an expression:
x <- 3
tibble(x = 1, y = x)
tibble(x = 1, y = !!x)

You can splice-unquote a list of quosures and expressions:
tibble(!!! list(x = rlang::quo(1:10), y = quote(x * 2)))

Use tibble_row() to construct a one-row tibble:
tibble_row(a = 1, lm = lm(Petal.Width ~ Petal.Length + Species, data = iris))

tribble 25

tribble Row-wise tibble creation

Description

Maturing

Create tibbles using an easier to read row-by-row layout. This is useful for small tables of data
where readability is important. Please see tibble-package for a general introduction.

Usage

tribble(...)

Arguments

... <dynamic-dots> Arguments specifying the structure of a tibble. Variable
names should be formulas, and may only appear before the data. These ar-
guments are processed with rlang::list2() and support unquote via !! and
unquote-splice via !!!.

Value

A tibble.

See Also

See quasiquotation for more details on tidy dots semantics, i.e. exactly how the ... argument is
processed.

Examples

tribble(
~colA, ~colB,
"a", 1,
"b", 2,
"c", 3

)

tribble will create a list column if the value in any cell is
not a scalar
tribble(

~x, ~y,
"a", 1:3,
"b", 4:6

)

26 view

view View an object

Description

Experimental
Calls utils::View() on the input and returns it, invisibly. If the input is not a data frame, it is
processed using a variant of as.data.frame(head(x,n)). A message is printed if the number of
rows exceeds n. This function has no effect in noninteractive sessions.

Usage

view(x, title = NULL, ..., n = NULL)

Arguments

x The object to display.

title The title to use for the display, by default the deparsed expression is used.

... Unused, must be empty.

n Maximum number of rows to display. Only used if x is not a data frame.

Details

The RStudio IDE overrides utils::View(), this is picked up correctly.

Index

∗ addition
add_column, 4
add_row, 5

.data, 14, 22

.onLoad(), 8
[.tbl_df (subsetting), 18
[<-.tbl_df (subsetting), 18
[[.tbl_df (subsetting), 18
[[<-.tbl_df (subsetting), 18
$.tbl_df (subsetting), 18
$<-.tbl_df (subsetting), 18

add_case (add_row), 5
add_column, 4, 5
add_row, 5, 5
as.data.frame(), 18
as_tibble, 6
as_tibble(), 2, 16, 21, 23
as_tibble_col (as_tibble), 6
as_tibble_row (as_tibble), 6

base::as.data.frame(), 6
base::data.frame(), 6, 22
base::list(), 14

column_to_rownames (rownames), 16

data.frame, 2, 6, 20
deframe (enframe), 9
dplyr::mutate(), 14, 22

enframe, 9
enframe(), 2, 8
enhanced printing, 22

format.tbl (formatting), 10
format.tbl_df (formatting), 10
formatting, 10, 20
frame_matrix, 12

glimpse, 13

glimpse(), 2, 21

has_rownames (rownames), 16

interactive, 26
is_tibble, 14

lst, 14

matrix, 6, 12

name, 18
new_tibble, 15

pillar::obj_sum(), 21
pillar::type_sum(), 21
poly, 6
print.tbl (formatting), 10
print.tbl(), 2, 21
print.tbl_df (formatting), 10

quasiquotation, 12, 23, 25

regular data frames, 18
remove_rownames (rownames), 16
rlang::as_function(), 4, 8, 23
rlang::list2(), 12, 15, 25
rlang::quos(), 14, 22
rowid_to_column (rownames), 16
rownames, 6, 8, 16, 20
rownames_to_column (rownames), 16

str(), 13
subsetting, 18, 20

table, 6
tbl_df, 2, 6, 22, 23
tbl_df (tbl_df-class), 20
tbl_df-class, 20
tbl_sum, 21
tibble, 9, 21, 25

27

28 INDEX

tibble(), 2, 4–6, 8, 14–16, 20, 21
tibble-package, 2, 25
tibble_row (tibble), 21
tibble_row(), 5
tribble, 25
tribble(), 2, 5, 12, 21
trunc_mat (formatting), 10
ts, 6

utils::View(), 26

validate_tibble (new_tibble), 15
vctrs::vec_as_names(), 4, 8, 20, 23
vctrs::vec_recycle(), 20
vctrs::vec_size(), 16, 20
vec_slice(), 18
view, 26

	tibble-package
	add_column
	add_row
	as_tibble
	enframe
	formatting
	frame_matrix
	glimpse
	is_tibble
	lst
	new_tibble
	rownames
	subsetting
	tbl_df-class
	tbl_sum
	tibble
	tribble
	view
	Index

